Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pelatihan Penggunaan Platform Canva untuk Optimalisasi Desain Grafis bagi Pengrajin Papan Bunga Akrilik Bukhori, Saiful; Bukhori, Hilmi Aziz; Dharmawan, Tio; Prasetyo, Beny; R., Windi Eka Y.
Jurnal Pengabdian Pada Masyarakat Vol 10 No 1 (2025): Jurnal Pengabdian Pada Masyarakat
Publisher : Universitas Mathla'ul Anwar Banten

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30653/jppm.v10i1.1105

Abstract

Pengrajin papan bunga akrilik, terutama yang membuat papan bunga beserta tulisan ucapan selamat pada momen spesial dengan desain khusus sering menghadapi beberapa permasalahan dalam desain tulisannya antara lain adalah: kualitas tulisan dan keterbacaan, keterampilan teknikal terutama dalam menentukan jenis dan ukuran tulisan, kreativitas dan desain sesuai dengan permintaan klien, efisiensi waktu pembuatan, serta estetika dan fungsi. Permasalahan ini disebabkan karena belum memiliki pengetahuan tentang cara mengelola tulisan ucapan selamat pada momen spesial dan masih menggunakan cara manual. Pengabdian kepada masyarakat ini bertujuan untuk memberikan keterampilan pada pengrajin papan bunga akrilik di Malang selaku peserta pelatihan dalam mengelola tulisan ucapan momen spesial pada papan bunga akrilik dengan menggunakan platform desain grafis online canva. Berdasarkan hasil evaluasi pengabdian kepada masyarakat yang kemudian dianalisis secara sistematis menunjukkan adanya peningkatan pengetahuan pengrajin papan bunga akrilik di Malang dalam hal manajemen desain tulisan pada papan bunga akrilik sekaligus mempengaruhi produk desain papan bunga secara keseluruhan sebelum dan sesudah dilaksanakan pelatihan. Acrylic flower board craftsmen, especially those who make flower boards with congratulatory writings on special moments with special designs often face several problems in their writing designs, including: writing quality and readability, technical skills especially in determining the type and size of writing, creativity and design according to client requests, efficiency of production time, and aesthetics and function. This problem is caused by not having knowledge about how to manage congratulatory writings on special moments and still using manual methods. This community service aims to provide skills to acrylic flower board craftsmen in Malang as training participants in managing special greeting writings on acrylic flower boards using the canva online graphic design platform. Based on the results of the community Service evaluation which were then analyzed systematically, it showed an increase in the knowledge of acrylic flower board craftsmen in Malang in terms of writing design management on acrylic flower boards as well as influencing the overall flower board design product before and after the training was carried out.
An Enhanced Particle Swarm Optimization with Mutation for Mean-Value-at-Risk Portfolio Optimization in the Indonesian Banking Sector Anam, Syaiful; Bukhori, Hilmi Aziz; Maulana, Avin; Maulana, M. Idam; Rasikhun, Hady
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.5191

Abstract

Portfolio optimization in emerging markets is challenging because high volatility and non-normal return distributions reduce the effectiveness of traditional mean–variance models, which tend to underestimate downside risk. This study aims to develop and evaluate an Enhanced Particle Swarm Optimization with Mutation (PSO with Mutation) for portfolio optimization under the Mean-Value-at-Risk (Mean-VaR) framework in the Indonesian banking sector. The novelty of this approach lies in integrating a mutation operator into standard PSO to maintain population diversity, prevent premature convergence, and improve exploration of the solution space. To evaluate the method, daily adjusted closing prices of 31 Indonesian bank stocks from January 2020 to July 2025 were collected. Preprocessing included removing tickers with incomplete data and computing daily returns. The optimization problem was formulated using Mean-VaR as the risk measure, with portfolio weight constraints. The proposed PSO with Mutation was benchmarked against standard PSO, Genetic Algorithm (GA), Bat Algorithm (BA), BA with Mutation, and classical models (Markowitz and Monte Carlo–based VaR). Performance was assessed using expected return, Mean-VaR, risk-adjusted return, Sharpe ratio, execution time, and stability across 25 independent runs. The results show that PSO with Mutation achieved a competitive expected return (0.0020), the lowest Mean-VaR (0.0311), the highest risk-adjusted return (0.0650), and the lowest variability across runs, while maintaining acceptable execution time. These findings confirm that mutation-enhanced PSO provides a robust, balanced, and efficient solution for portfolio optimization, making it highly relevant for investors in volatile emerging markets and advancing research on hybrid metaheuristics in financial optimization.
GWO-Enhanced Hybrid Deep Learning with SHAP for Explainable TLKM.JK Stock Forecasting Bukhori, Hilmi Aziz; Bukhori, Saiful; Anam, Syaiful; Yusuf, Feby Indriana; Sari, Meylita
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.5205

Abstract

This study presents an innovative Grey Wolf Optimization (GWO)-enhanced hybrid deep learning model integrating Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory (BiLSTM), and Transformer, combined with SHAP for interpretable stock price forecasting of TLKM.JK from July 29, 2024, to July 29, 2025. Addressing non-linear market dynamics, the model evaluates seven experimental cases, with the GWO-optimized configuration (Case 2) achieving superior performance, with a Root Mean Squared Error (RMSE) of 75.23, Mean Absolute Error (MAE) of 58.14, and Directional Accuracy (DA) of 76.2%, surpassing the baseline by 17.4% in RMSE and 8.1% in DA. Notably, Case 2 excels during the April 2025 surge (11.8% increase, MAE 53, DA 82%) and the high-volume day of May 28, 2025 (531,309,500 shares, MAE 48), leveraging Volume (SHAP 0.45) and RSI (0.28) as key predictors. With a 4-hour convergence time on an NVIDIA RTX 3060 GPU, the model ensures computational efficiency and interpretability, making it a robust tool for traders. Despite limitations in single-stock focus and GPU dependency, this framework advances AI-driven financial forecasting by offering transparent, high-accuracy predictions, paving the way for multi-stock applications and real-time SHAP updates.