Claim Missing Document
Check
Articles

Found 2 Documents
Search

Android malware detection through opcode sequences using deep learning LSTM and GRU networks Lakshmanarao, Annemneedi; Mantena, Jeevana Sujitha; Thota, Krishna Kishore; Chandaka, Pavan Sathish; Murali Krishna, Chinta Venkata; Jetty, Madhan Kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp1106-1114

Abstract

Android malware detection was a complex task due to the intricate structure of Android applications, which consisted of numerous Java methods and classes. Effective detection required the extraction of meaningful features and the application of advanced machine learning (ML) or deep learning (DL) algorithms. This paper presented a novel approach to detecting Android malware by leveraging opcode sequences extracted from Android applications. These opcode sequences, which differed between malicious and benign apps, formed the basis of the detection model. The methodology involved extracting opcode sequences from decompiled Android APK files using the “Androguard” tool and applying recurrent neural networks (RNN) with long short-term memory (LSTM), Bi-LSTM, and gated recurrent unit (GRU) architectures to classify the apps as either malware or benign. The combination of these advanced DL techniques allowed for capturing temporal dependencies in opcode sequences, resulting in a significant improvement in detection capabilities. This work underscored the potential of using opcode sequences in conjunction with RNN, LSTM, and GRU for robust and accurate malware detection, while also highlighting the importance of further exploring additional features for comprehensive classification.
Navigating Heart Stroke Terrain: A Cutting-Edge Feed-Forward Neural Network Expedition Praveen, S Phani; Mantena, Jeevana Sujitha; Sirisha, Uddagiri; Dewi, Deshinta Arrova; Kurniawan, Tri Basuki; Onn, Choo Wou; Yorman, Yorman
Journal of Applied Data Sciences Vol 6, No 3: September 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i3.763

Abstract

Heart stroke remains one of the leading causes of death worldwide, necessitating early and accurate prediction systems to enable timely medical intervention. While a variety of machine learning approaches have been employed to address this issue, including Logistic Regression, Decision Trees, Random Forests, Support Vector Machines, and K-Nearest Neighbors, these models often suffer from limitations such as overfitting, insufficient generalization, poor performance on imbalanced datasets, and inability to capture complex nonlinear patterns in clinical data. Additionally, many existing works do not comprehensively integrate both clinical and demographic features or lack rigorous evaluation metrics beyond accuracy alone. This study proposes a novel Feed-Forward Neural Network (FFNN) model for heart stroke prediction, designed to overcome the shortcomings of conventional models. Unlike shallow classifiers, the FFNN architecture employed here leverages multiple hidden layers and nonlinear activation functions to learn intricate relationships within the dataset. The dataset used comprises various attributes such as age, hypertension, heart disease, BMI, and smoking status, which were preprocessed through normalization, one-hot encoding, and imputation techniques to ensure data quality and model performance. Experiments were conducted using a stratified train-test split, and the model was trained using the Adam optimizer with carefully tuned hyperparameters. Comparative evaluations against baseline models (Logistic Regression, Random Forest, and SVM) were carried out using precision, recall, F1-score, and ROC-AUC as performance metrics. The proposed FFNN achieved the highest accuracy of 96.47%, along with substantial improvements in recall and F1-score, highlighting its superior capability in identifying potential stroke cases even in imbalanced datasets. This work bridges a significant gap in heart stroke prediction by demonstrating the effectiveness of deep learning models—specifically FFNNs—in extracting complex patterns from diverse patient data. It also sets the stage for further exploration of deep learning-based clinical decision support systems.