Claim Missing Document
Check
Articles

Found 2 Documents
Search

Navigating Heart Stroke Terrain: A Cutting-Edge Feed-Forward Neural Network Expedition Praveen, S Phani; Mantena, Jeevana Sujitha; Sirisha, Uddagiri; Dewi, Deshinta Arrova; Kurniawan, Tri Basuki; Onn, Choo Wou; Yorman, Yorman
Journal of Applied Data Sciences Vol 6, No 3: September 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i3.763

Abstract

Heart stroke remains one of the leading causes of death worldwide, necessitating early and accurate prediction systems to enable timely medical intervention. While a variety of machine learning approaches have been employed to address this issue, including Logistic Regression, Decision Trees, Random Forests, Support Vector Machines, and K-Nearest Neighbors, these models often suffer from limitations such as overfitting, insufficient generalization, poor performance on imbalanced datasets, and inability to capture complex nonlinear patterns in clinical data. Additionally, many existing works do not comprehensively integrate both clinical and demographic features or lack rigorous evaluation metrics beyond accuracy alone. This study proposes a novel Feed-Forward Neural Network (FFNN) model for heart stroke prediction, designed to overcome the shortcomings of conventional models. Unlike shallow classifiers, the FFNN architecture employed here leverages multiple hidden layers and nonlinear activation functions to learn intricate relationships within the dataset. The dataset used comprises various attributes such as age, hypertension, heart disease, BMI, and smoking status, which were preprocessed through normalization, one-hot encoding, and imputation techniques to ensure data quality and model performance. Experiments were conducted using a stratified train-test split, and the model was trained using the Adam optimizer with carefully tuned hyperparameters. Comparative evaluations against baseline models (Logistic Regression, Random Forest, and SVM) were carried out using precision, recall, F1-score, and ROC-AUC as performance metrics. The proposed FFNN achieved the highest accuracy of 96.47%, along with substantial improvements in recall and F1-score, highlighting its superior capability in identifying potential stroke cases even in imbalanced datasets. This work bridges a significant gap in heart stroke prediction by demonstrating the effectiveness of deep learning models—specifically FFNNs—in extracting complex patterns from diverse patient data. It also sets the stage for further exploration of deep learning-based clinical decision support systems.
Stacked LSTM with Multi Head Attention Based Model for Intrusion Detection Praveen, S Phani; Panguluri, Padmavathi; Sirisha, Uddagiri; Dewi, Deshinta Arrova; Kurniawan, Tri Basuki; Efrizoni, Lusiana
Journal of Applied Data Sciences Vol 7, No 1: January 2026
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v7i1.764

Abstract

The rapid advancement of digital technologies, including the Internet of Things (IoT), cloud computing, and mobile communications, has intensified reliance on interconnected networks, thereby increasing exposure to diverse cyber threats. Intrusion Detection Systems (IDS) are essential for identifying and mitigating these threats; however, traditional signature-based and rule-based methods fail to detect unknown or complex attacks and often generate high false positive rates. Recent studies have explored machine learning (ML) and deep learning (DL) approaches for IDS development, yet many suffer from poor generalization, limited scalability, and an inability to capture both spatial and temporal dependencies in network traffic. To overcome these challenges, this study proposes a hybrid deep learning framework integrating Convolutional Neural Networks (CNN), Stacked Long Short-Term Memory (LSTM) networks, and a Multi-Head Self-Attention (MHSA) mechanism. CNN layers extract spatial features, stacked LSTM layers capture long-term temporal dependencies, and MHSA enhances focus on the most relevant time steps, improving accuracy and reducing false alarms. The proposed model was trained and evaluated on the UNSW-NB15 dataset, which represents modern attack vectors and realistic network behavior. Experimental results show that the model achieves state-of-the-art performance, attaining 99.99% accuracy and outperforming existing ML and DL-based intrusion detection systems in both precision and generalization capability.