Sitorus, Sarah Tri Yosepha
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparative Analysis of Indonesian Text Mining News Online Classification Using the K-Nearest Neighbor and Random Forest Algorithm Sihombing, Oloan; Sitorus, Sarah Tri Yosepha; Indra, Evta; Sinurat, Stiven Hamonangan; Juanta, Palma
Jurnal Sistem Informasi dan Ilmu Komputer Vol. 6 No. 1 (2022): JURNAL SISTEM INFROMASI DAN ILMU KOMPUTER PRIMA (JUSIKOMP)
Publisher : Fakultas Teknologi dan Ilmu Komputer Universitas Prima Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34012/jurnalsisteminformasidanilmukomputer.v6i1.2824

Abstract

The rapid development of internet technology today makes many news media grow pretty rapidly. Newspaper companies have utilized internet technology to spread the latest news online through online mass media. Hundreds of thousands of stories are written and published daily on online-based Indonesian news portals, making it difficult for readers to find the news topics they want to read. In making it easier for readers to find the news they are looking for, news needs to be classified according to its respective categories, such as education, current news, finance, and sports. So to classify categories, a text classification method is needed or often called Text Mining. Text mining is a data mining classification technique for processing text using a computer to produce helpful text analysis. In this study, a comparison of 2 methods for developing texts was carried out to get accuracy above 80%.