B. Balilo Jr , Benedicto
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Sentiment Analysis Using Grok AI as an Auto-Labeling Tool in The Text Processing Stage Agustin, Yoga Handoko; Kurniadi, Dede; Julianto, Indri Tri; B. Balilo Jr , Benedicto
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 2 (2025): Research Articles April 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i2.14632

Abstract

A critical aspect of Natural Language Processing (NLP) is text processing, where text labeling represents the most significant challenge due to its resource-intensive nature when conducted manually. At this stage, automatic labeling emerges as a more practical solution, particularly with the advent of Artificial Intelligence (AI), which offers tools to address this obstacle. Grok AI, equipped with a new feature operable on Platform X, provides a promising approach. This study aims to leverage the Grok AI feature on Platform X for automatic text labeling. The research methodology involves labeling text data obtained from a public dataset. To assess the quality of the labeling results, an evaluation method employing Naive Bayes classification modeling is applied. The findings reveal that Grok AI's performance closely approximates that of human labeling. The highest accuracy achieved by Grok AI is 51.71% using the k-Nearest Neighbors (k-NN) algorithm, approaching the human labeling accuracy of 60.52% with k-NN. Furthermore, Grok AI surpasses the performance of VADER labeling, which achieves an accuracy of only 49.49% with Naive Bayes. Consequently, the Grok AI feature on Platform X presents a viable alternative for the automatic labeling of text data.
ENHANCING SENTIMENT ANALYSIS WITH CHATBOTS: A COMPARATIVE STUDY OF TEXT PRE-PROCESSING Indri Tri Julianto; Kurniadi, Dede; B. Balilo Jr , Benedicto
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 6 (2023): JUTIF Volume 4, Number 6, Desember 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.6.1448

Abstract

Text pre-processing plays a crucial role in the Sentiment Analysis process. Machine Learning models like Chat GPT-3.5 by OpenAI and Google Bard serve as alternative methods for text pre-processing. This study aims to evaluate the capabilities of both Chatbots in the text pre-processing stage while assessing their performance using a dataset obtained by crawling from source X. The study involves a comparison of Chat GPT-3.5 and Google Bard using Decision Tree and Naïve Bayes algorithms. The validation process employs K-Fold Cross Validation with a K value of 10. Additionally, three sampling methods, namely Linear, Shuffled, and Stratified Sampling, are utilized. The findings reveal that Chat GPT-3.5 performs best when using the Decision Tree algorithm with a K-Fold Cross value of 10, and employing Stratified Sampling, achieving an Accuracy of 90.68%, Precision of 90.63%, and Recall of 100%. On the other hand, Google Bard's optimal performance is achieved with the Decision Tree algorithm, a K-Fold Cross value of 10, and Shuffled Sampling, resulting in an Accuracy of 74.00%, Precision of 72.73%, and Recall of 98.77%. The study concludes that Chat GPT-3.5 and Google Bard are viable alternatives for text pre-processing in Sentiment Analysis. Performance measurements indicate that Chat GPT-3.5 outperforms Google Bard, achieving an Accuracy of 90.68%, Precision of 90.63%, and Recall of 100%. These results were validated by comparing them to human annotations, which achieved an accuracy score of 85.20%, Precision of 85.71%, and Recall of 99.03% when using the Decision Tree algorithm with a K-Fold Cross value of 10 and employing Stratified Sampling. This suggests that Chat GPT-3.5's text pre-processing performance is on par with human annotations.