Claim Missing Document
Check
Articles

Found 28 Documents
Search

Distribution of Iron Sand in The Widarapayung Coast Area at Regency of Cilacap Based on Magnetic Anomaly Data Sehah Allasimy; Sukmaji Anom Raharjo; Muhammad Andi Kurniawan
INDONESIAN JOURNAL OF APPLIED PHYSICS Vol 6, No 02 (2016): IJAP Volume 06 Issue 02 Year 2016
Publisher : Department of Physics, Sebelas Maret University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13057/ijap.v6i02.1896

Abstract

Interpretation on the magnetic anomalies data has been done in the Widarapayung coast area, District of Binangun, Regency of Cilacap to identify distribution of iron sand. The acquisition of magnetic intensity data in this area has been done in December 2015 and May 2016 using Proton Precession Magnetometer (PPM) with type of GSM-19T. The research area extends on the geographic positions of 109.2501°BT – 109.2702°E and 7.6781°LS – 7.6986°S. Magnetic anomalies data modeling is done with using Mag2DC for Windows software so obtained some subsurface anomalous objects model. The anomaly object model having a value of magnetic susceptibility of 0.0093cgs unit is interpreted as iron sand interspersed with silt, clay, sand, and gravel from the alluvium formation. This formation is lain at a depth of 1.709 to 11.966m and a length of 1576.7m. The iron sand contained in this formation is estimated prospects for exploitation. Based on the interpretation results, alluvium formation is also found at a depth of 1.140 to 30.769m, which expected be composed of silt, clay, sand, and gravel with a magnetic susceptibility value of 0.0051cgs unit. The content of iron sand in this 2nd alluvium formation is expected to be relatively small.
Interpretation of Magnetic Anomaly Data in the Andesitic Rock Prospect Area of Kutasari Subregency, Purbalingga Regency, Central Java, Indonesia Sehah Sehah; Sukmaji Anom Raharjo; Urip Nurwijayanto Prabowo; Dwi Setiawan Sutanto
Indonesian Journal on Geoscience Vol. 8 No. 3 (2021)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.8.3.345-357

Abstract

DOI:10.17014/ijog.8.3.345-357Interpretation of magnetic anomaly data has been carried out in the andesitic rock prospect area, Kutasari Subregency, Purbalingga Regency, Central Java, Indonesia. Geographically, this area is located within 109.2788° - 109.3072°E and 7.3032° - 7.3319°S. The study has been done in April – September 2019 with the purpose to map the distribution of andesitic rocks based on the local magnetic anomaly data. The data that are acquired in this study have the values ranging between -1,238.13 - 1,892.40 nT. The results of qualitative interpretation on the local magnetic anomaly data having been reduced to the pole show the distribution of strong anomalous sources in the northwest area interpreted as massive andesitic rocks. Whereas the results of quantitative interpretation through 2D-forward modeling on the local magnetic anomaly data show six anomalous bodies, with magnetic susceptibility values ranging from 0.0025 to 0.0350 cgs and depths range between 7.16 - 505.97 m. The highest magnetic susceptibility is 0.0350 cgs interpreted as a massive andesite intrusion forming a very dense dike; whereas the lowest magnetic susceptibility is 0.0025 cgs interpreted as undifferentiated igneous rocks, volcanic breccias, lava, and tuff. Based on the study results, the correlation between the results of qualitative and quantitative interpretations occurs.
Physical modeling of magma chamber of slamet volcano by means of satellite gravimetric data Sehah, Sehah; Prabowo, Urip Nurwijayanto; Raharjo, Sukmaji Anom; Ikhwana, Aina Zahra
Communications in Science and Technology Vol 7 No 2 (2022)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.7.2.2022.1001

Abstract

Slamet Volcano (3,432 m) is the highest volcano in Central Java, Indonesia, with a weak explosive type of eruption compared to other active volcanoes. Designing the magma chamber model may help reveal the characteristics of Slamet Volcano. The modelling uses the gravimetric satellite data from GGMplus, which is best in spatial resolution compared to other satellite data, i.e. 220 m. Data processing begins with Bouguer correction and terrain correction and has resulted in complete Bouguer anomalies data, with values ranging from 11.068 – 117.451 mGal. Further, residual Bouguer anomalies data were obtained after data reduction to the horizontal surface and removal of regional anomalies data, to obtain values ranging from -67.569 – 38.808 mGal. The residual anomaly contour map shows the lowest anomalous value is under the volcanic cone at positions of 109.21967° E and 7.24281° S which is estimated to be the location of the magma chamber of Slamet Volcano. However, the inversion modeling resulting from the residual Bouguer anomalies data shows that the magma chamber of Slamet Volcano can be observed clearly at positions of 109.22053° E and 7.24719° S. The location of the magma chamber is not perfectly vertical under the volcanic cone but has a slight slope. The obtained model of the magma chamber has a relatively small volume and shallow depth, i.e. about 1 – 4 km. The obtained physical parameters of the magma chamber impact the characteristics of the eruption of Slamet Volcano which tend to be weak explosive.
Two Dimensional Modeling of Basaltic Rocks Intrusion Based on The Local Magnetic Anomalies Data in Jatilawang District Banyumas Regency Sehah Sehah; Sukmaji Anom Raharjo; Urip Nurwijayanto Prabowo
INDONESIAN JOURNAL OF APPLIED PHYSICS Vol 10, No 2 (2020): October
Publisher : Department of Physics, Sebelas Maret University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13057/ijap.v10i2.41885

Abstract

Two dimensional modeling to basaltic rocks intrusion in Pekuncen and Karanglewas Villages Jatilawang District, Banyumas Regency, Central Java based on the local magnetic anomalies data has been carried out in March – June 2020. The amount of magnetic data obtained from the acquisition in the field was 239 data stretching in position of 109.107222° – 109.134944°E and 7.561361° – 7.577306°S, with the local magnetic anomalies values ranging of -2,961.11 – 1,516.31 nT. To model anomalous sources in the subsurface in two dimensions, then the local magnetic anomalies data is transformed into pseudogravity anomalies data, so that anomalous value can be obtained as -27.815 – 41.087 mGal. Based on the pseudogravity anomalous map, the basaltic rock intrusion is interpreted to be located in the eastern part of the research area, so modeling of anomalous sources is conducted in this area. The results of 2D-modeling to local magnetic anomalies data indicate the presence of anomalous object interpreted as basaltic rock intrusion with magnetic susceptibility contrast value of 0.0223 cgs, located at depth of 52.61 – 505.97 m and a lateral length of 1777.94 m. This rock intrudes sediment rock from the Halang Formation and is connected to other basaltic rock near the surface with magnetic susceptibility contrast value of 0.0165 cgs, located at depth of 1.94 – 80.90 m and lateral length of 751.83 m. The results of lithological interpretation are in accordance with the geological information of the research area.
Comparison Of Facies Estimation Using Support Vector Machine (SVM) And K-Nearest Neighbor (KNN) Algorithm Based on Well Log Data Prabowo*, Urip Nurwijayanto; Ferdiyan, Akmal; Raharjo, Sukmaji Anom; Sehah, Sehah; Candra, Arya Dwi
Aceh International Journal of Science and Technology Vol 12, No 2 (2023): August 2023
Publisher : Graduate School of Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13170/aijst.12.2.28428

Abstract

Facies classification is the process of identifying rock lithology based on indirect measurements such as well log measurements. Usually, the facies are classified manually by experienced geologists, so it takes a long time and is less efficient. In this paper, two machine learning (Support vector machine and K-Nearest Neighbor) were adopted to increase the effectiveness and shorten the time process of facies classification in Z Field, Indonesia. The machine learning algorithm was carried out in 4 steps, i.e. data selection, training phase, verification, and validation stage. The machine learning input data are density log, gamma ray log, resistivity log, SP log; and the output facies target are Sandstone, Siltstone, Claystone, and Limestone. The data is divided into train data for the training process and test data to validate the machine learning output. In Support vector machine results, the training accuracy is 70.1% and the testing accuracy is 47.4%, while in KNearest Neighbor results, the training accuracy is 70.1% and the testing accuracy is 63.3%. This result showed K-Nearest Neighbor has better accuracy than the support vector machine in facies classification in the Z field.
Identifikasi Sesar Menggunakan Transformasi Pseudogravitasi Data Anomali Magnetik di Desa Pekuncen Kecamatan Jatilawang Kabupaten Banyumas Sehah, Sehah; Raharjo, Sukmaji Anom; Sa'adah, Fajar Nur
Bulletin of Scientific Contribution Vol 21, No 2 (2023): Bulletin of Scientific Contribution : GEOLOGY
Publisher : Fakultas Teknik Geologi Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/bsc.v21i2.47228

Abstract

Geophysical survey with magnetic method has been carried out in Pekuncen Village, Jatilawang District, Banyumas Regency. Magnetic data acquisition was carried out on 131 points using a set of Proton Precession Magnetometer (PPM) equipment. Data processing includes daily and IGRF corrections, reduction to a horizontal surface, and upward continuation. The application of pseudo-gravity transformation was carried out on magnetic anomalies data to clarify the sources of the magnetic anomalous which are the study target. Anomaly modeling was carried out along the AA' and BB' trajectories to identify the possibility of subsurface faults. Determination of the position of these trajectories is based on a pseudogravity anomaly contour map, especially to help determine the presence of faults. Based on the modeling results on the AA' trajectory, fault is found in sedimentary rock and basaltic rock; whereas in BB' trajectory, fault is found in basaltic rocks. Based on the modeling results, the maximum depth of the two faults is 500 m.
Analisis Porositas Dan Permeabilitas Batuan Pada Daerah Rawan Longsor Menggunakan Teknik Pengolahan Citra Digital Sa'adah, Nailis; Irayani, Zaroh; Raharjo, Sukmaji Anom
Jurnal Geofisika Vol 21 No 2 (2023): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36435/jgf.v21i2.577

Abstract

Porositas dan permeabilitas batuan merupakan salah satu sifat batuan penyebab terjadinya tanah longsor. Analisis porositas dan permeabilitas penting dilakukan untuk mengetahui struktur pori untuk memprediksi pergerakan fluida di dalam pori batuan. Citra digital sampel batuan yang digunakan merupakan citra digital sampel batuan DP II, DP III, DP IV, dan DP V dari daerah rawan longsor Desa Prendengan Kecamatan Banjarmangu Kabupaten Banjarnegara. Sampel batuan dianalisis menggunakan citra digital melalui pemindaian dengan Micro-CT Skyscan 1173 dengan resolusi citra sebesar 7,8375 µm/pixel. Data yang didapatkan selanjutnya dihitung nilai porositas dan permeabilitas batuan, agar diketahui pengaruhnya terhadap kelongsoran. Nilai porositas yang dihitung merupakan porositas total, porositas terbuka, dan porositas tertutup menggunakan sofware CT-Analyser. Sedangkan nilai permeabilitas dihitung menggunakan Palabos (Parallel Lattice Boltzmann Solver) dengan bahasa pemrograman pada software Matlab dan teknik grup renormalisasi. Hasil analisis menunjukkan bahwa batuan DP II memiliki nilai porositas sebesar 6,55%, batuan DP III memiliki nilai porositas sebesar 4,61%, batuan DP IV memiliki nilai porositas sebesar 51,18%, dan batuan DP V memiliki nilai porositas sebesar 60,21%. Permeabilitas sampel batuan DP III memiliki nilai terendah dari DP II, DP IV, dan DP V. Berdasarkan hasil yang diperoleh diketahui bahwa rendahnya porositas dan permeabilitas pada batuan DP III menunjukkan bahwa batuan DP III memiliki struktur yang kompak dan impermeable, sehingga memungkinkan DP III berfungsi sebagai bidang gelincir tanah longsor. Sedangkan sampel batuan DP IV dan DP V memiliki nilai permeabilitas yang tinggi sehingga berpotensi sebagai zona longsoran. Semakin tinggi porositas yang saling terkoneksi satu sama lain pada batuan maka semakin besar permeabilitas batuan tersebut yang mengakibatkan laju infiltrasi yang tinggi dan berpotensi sebagai zona longsoran. Hasil analisis menunjukkan bahwa batuan DP II memiliki nilai porositas sebesar 6,55%, batuan DP III memiliki nilai porositas sebesar 4,61%, batuan DP IV memiliki nilai porositas sebesar 51,18%, dan batuan DP V memiliki nilai porositas sebesar 60,21%. Permeabilitas sampel batuan DP III memiliki nilai terendah dari DP II, DP IV, dan DP V. Kecilnya porositas dan permeabilitas pada batuan DP III menunjukkan bahwa batuan DP III memiliki struktur yang kompak dan impermeable sehingga memungkinkan DP III berfungsi sebagai bidang gelincir tanah longsor. Sampel batuan DP IV dan DP V memiliki nilai permeabilitas yang tinggi sehingga berpotensi sebagai zona longsoran.
Perhitungan Temperatur Reservoir Panas Bumi Mata Air Panas Daerah Bantarkawung Menggunakan Metode Geotermometer Na-K Dan Entalpi-Silika Iswahyudi, Sachrul; Attabik, Laskarul Wildan; Setijadi, Rachmad; Raharjo, Sukmaji Anom
Jurnal Geosaintek Vol. 5 No. 1 (2019)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Manifestasi panas bumi yang muncul di daerah Bantarkawung dan sekitarnya sebagai refleksi sistem panas bumi adalah berupa mata air panas. Penelitian ini terkait pada dua mata air panas yaitu Mata Air Panas Cipanas dan Mata Air Panas Cilakar. Penelitian ini juga menggunakan dua mata air meteorik yaitu Mata Air Meteorik Warudoyong dan Mata Air Meteorik Cilimus sebagai data penunjang. Penelitian ini menggunakan analisis metode geokimia yang diolah berdasarkan data penelitian terdahulu untuk mengetahui tipe air panas bumi, geoindikator dan kesetimbangan fluida. Penentuan temperatur panas bumi daerah penelitian menggunakan dua metode yaitu metode geotermometer Na-K yang berdasar pada kandungan natrium dan kalium mata air panas dan metode diagram silika-entalpi yang berdasar kandungan silika dan entalpi mata air panas serta air meteorik. Berdasarkan analisis geoindikator Cl-Li-B, diinterpretasikan terdapat 2 sistem panas bumi dengan reservoir yang berbeda pada daerah penelitian yaitu Reservoir Cipanas dan Cilakar. Berdasarkan plot Na-K-Mg untuk mengetahui kesetimbangan fluida, MAP Cipanas merupakan fluida partial equilibrium sedangkan MAP Cilakar adalah fluida immature water. Temperatur panas bumi berdasarkan metode geotermometer Na-K adalah 80oC untuk MAP Cipanas dan 60oC untuk MAP Cilakar. Sedangkan berdasarkan metode silika entalpi adalah 145oC untuk MAP Cipanas dan 164oC untuk MAP Cilakar.