Effendi, Mukhammad Khoirul
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENERAPAN DATA MINING UNTUK PREDIKSI PENDAFTARAN PDB DI SMKN3 METRO MENGGUNAKAN MACHINE LEARNING Effendi, Mukhammad Khoirul; Sriyanto, Sriyanto; Goesderilidar, Goesderilidar; Nugroho, Handoyo Widi; Triloka, Joko
JSR : Jaringan Sistem Informasi Robotik Vol 9, No 1 (2025): JSR: Jaringan Sistem Informasi Robotik
Publisher : AMIK Mitra Gama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58486/jsr.v9i1.482

Abstract

Penelitian ini bertujuan untuk menerapkan teknik data mining dalam memprediksi jumlah pendaftar Penerimaan Peserta Didik Baru (PPDB) di SMKN3 Metro menggunakan algoritma machine learning, khususnya Decision Tree (C4.5). Masalah utama yang dihadapi adalah tantangan pengelolaan data historis dan keterbatasan kapasitas sekolah dalam merencanakan penerimaan siswa secara efektif. Metode penelitian meliputi pengumpulan data historis pendaftaran, pra-pemrosesan data, penerapan algoritma machine learning, serta evaluasi kinerja model menggunakan metrik seperti Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), dan koefisien determinasi (R²).Hasil penelitian menunjukkan bahwa model Decision Tree (C4.5) memiliki performa terbaik dibandingkan algoritma lain, dengan nilai MSE sebesar 290,948, RMSE 17,057, MAE 11,096, dan R² sebesar 0,893. Akurasi prediksi yang tinggi ini menunjukkan potensi besar algoritma tersebut dalam mendukung pengelolaan PPDB secara lebih efisien. Penelitian ini diharapkan dapat menjadi solusi inovatif bagi SMKN3 Metro dalam merencanakan penerimaan siswa baru dan optimalisasi sumber daya sekolah. Selain itu, model ini dapat menjadi referensi bagi institusi pendidikan lain dalam mengadopsi teknologi serupa.Kata Kunci: Data Mining, Prediksi Pendaftar, PPDB, Decision Tree, SMKN3 MetroAbstractThis research focuses on implementing data mining to predict the number of registrants for new student admissions (PPDB) at SMKN3 Metro using the C4.5 machine learning algorithm. The study aims to address annual challenges in data management and school capacity limitations. By leveraging historical registration data, an accurate predictive model is developed to assist the school in planning student admissions more effectively. The methodology includes data collection and preprocessing, application of the C4.5 algorithm, and model performance evaluation based on prediction accuracy. Preliminary results indicate that the C4.5 algorithm outperforms other models, achieving a Mean Squared Error (MSE) of 290.948, Root Mean Squared Error (RMSE) of 17.057, and a coefficient of determination (R²) of 0.893. These findings demonstrate the model's reliability in estimating the number of registrants for key competencies such as Software Engineering and Computer Network Engineering. This implementation is expected to improve the efficiency of the PPDB process and resource planning at SMKN3 Metro, while providing a practical application of data mining and machine learning in educational management.Keywords: Data Mining, PPDB Prediction, Machine Learning, C4.5 Algorithm, SMKN3 Metro
Optimizing Student Depression Prediction Using Particle Swarm Optimization and Random Forest Effendi, Mukhammad Khoirul; -, Sriyanto; Irianto, Suhendro Yusuf; Fauzi, Chairani; Vitriani, Yelfi
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 11, No 1 (2025): June 2025
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v11i1.35954

Abstract

Student mental health is a growing concern due to increasing academic pressure, social demands, and economic factors affecting their well-being. Depression, a common issue among students, significantly impacts academic performance and overall quality of life. Therefore, early detection and accurate prediction of student mental health conditions are essential to provide timely interventions. This study aims to improve the accuracy of depression prediction among university students by integrating Particle Swarm Optimization (PSO) for feature selection with Random Forest (RF) as the classification model. The dataset used is the Student Depression Dataset from Kaggle, consisting of 27,900 respondents with 18 features related to demographic, academic, and psychological factors. Data preprocessing includes handling missing values, normalization, categorical encoding, and feature selection using PSO. The model is trained and evaluated using 10-Fold Cross-Validation. Experimental results show that PSO-optimized Random Forest outperforms the standard Random Forest model. The optimized model achieves an accuracy of 84.08%, precision of 82.79%, recall of 77.79%, and an AUC-ROC score of 0.912, improving classification performance. These findings demonstrate that PSO effectively enhances feature selection, leading to better classification accuracy. This study contributes to the development of a more accurate and efficient machine learning model for detecting student depression. By optimizing feature selection, this approach reduces computational complexity while maintaining high predictive performance. Future research can explore hybrid optimization techniques such as Genetic Algorithm (GA) or Differential Evolution (DE) to further enhance model generalization across different datasets.