Claim Missing Document
Check
Articles

Found 3 Documents
Search

MODELING AND FORECASTING THE TOTAL VOLUME OF GOODS TRANSPORTED BY RAIL IN INDONESIA USING SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (SARIMA) Syahzaqi, Idrus; Sediono, Sediono; Anggakusuma, Aurellia Calista; Wieldyanisa, Ezha Easyfa; Oktavia, Sabrina Salsa
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp829-842

Abstract

Transportation has an important role in supporting the mobility of people in Indonesia. Trains are included in the most widely used transportation category because they are effective and efficient, not only transporting passengers, trains also have a role in the distribution of goods. This study aims to model and forecast total volume of goods transported through rail transportation in Indonesia using the Seasonal Autoregressive Integrated Moving Average (SARIMA) Method because the data has seasonal trend. The data used comes from the Central Statistics Agency (BPS) from January 2013 to April 2024. The results were obtained that the SARIMA (0,1,1)(0,1,1)12 model is the best model with a MAPE value of 0.96% which is included in the category of accurate model. In addition to being an additional insight, this research can also be a reference in the management of railway transportation considering the number of uses both passengers, the distribution of goods that continue to increase, and can be recommendation for other research that same topic with it.
Peramalan Jumlah Barang Kereta Api di Indonesia Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) Syahzaqi, Idrus; Sediono, Sediono; Oktavia, Sabrina Salsa; Anggakusuma, Aurellia Calista; Wieldyanisa, Ezha Easyfa
Jurnal Statistika dan Komputasi Vol. 4 No. 1 (2025): Jurnal Statistika dan Komputasi
Publisher : Universitas Nahdlatul Ulama Sunan Giri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32665/statkom.v4i1.4424

Abstract

Background: Freight transportation is an important part of the business run by PT Kereta Api Indonesia. To support effective strategic planning and infrastructure development, an accurate prediction of the amount of goods to be transported in the future is required. Therefore, historical data-based forecasting methods such as Seasonal Autoregressive Interated Moving Average (SARIMA) can be a relevant approach to predict the number of railway goods in Indonesia. Objective: Obtain a suitable model to forecast the number of goods transported by rail transportation in Indonesia, and to determine the results of the forecasting. Methods: This research uses the time series method with the Seasonal Autoregressive Integrated Moving Averang (SARIMA) model approach based on data characteristics that show seasonal patterns. SARIMA itself is able to integrate seasonal pattern components in the data and is able to effectively capture periodic and structural dynamics in seasonal data. Results: The best model obtained is probabilistic SARIMA(0,1,1)(0,1,1)12, using secondary data sourced from the Central Bureau of Statistics (BPS) in the range of January 2013 to March 2024. Forecasting for the next 12 months (April 2023 to March 2024) shows a Mean Absolute Percentage Error (MAPE) value of 8.03% which indicates that the level of forecasting accuracy is very good. Conclusion: The probabilistic ARIMA(0,1,1)(0,1,1)12 model can be used as a reliable reference in predicting the amount of goods transported through rail transportation in Indonesia.
ANALISIS BIPLOT PADA BERBAGAI FAKTOR KEMISKINAN DI INDONESIA BERDASARKAN PROVINSI Wieldyanisa, Ezha Easyfa; Ismi, Ferissa Maulida; Putri, Refa Berliana; Dwitya, Shabrina Nareswari; Elly Pusporani; Amelia, Dita
Elastisitas : Jurnal Ekonomi Pembangunan Vol. 7 No. 2 (2025): Elastisitas, September 2025
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/e-jep.v7i2.09

Abstract

Kemiskinan merupakan permasalahan kompleks yang dipengaruhi oleh berbagai faktor sosial dan ekonomi. Berdasarkan hal tersebut, penelitian ini bertujuan untuk melihat hubungan antara provinsi di Indonesia dan berbagai faktor yang berpengaruh terhadap kemiskinan seperti pendidikan, kesehatan, dan infrastruktur dasar menggunakan analisis biplot. Data sekunder tahun 2024 dari BPS digunakan dengan delapan variabel utama, meliputi usia harapan hidup, produk domestik regional bruto (PDRB) per kapita, angka melek huruf, rumah tangga dengan sanitasi layak, akses air layak, akses listrik, angka partisipasi sekolah, dan rata-rata lama sekolah. Hasil analisis menunjukkan bahwa 81,772% keragaman data dapat dijelaskan oleh dua komponen utama dalam grafik biplot. Provinsi-provinsi dikelompokkan ke dalam empat kuadran berdasarkan kesamaan karakteristik kemiskinan. Faktor dengan keragaman tertinggi adalah rumah tangga dengan sanitasi layak, sedangkan faktor dengan keragaman terendah adalah PDRB per kapitaKorelasi antar variabel menunjukkan bahwa angka melek huruf dan akses listrik memiliki hubungan paling kuat, yang berarti semakin tinggi tingkat melek huruf suatu daerah, semakin besar pula kemungkinan masyarakatnya memiliki akses terhadap listrik. Sebaliknya, hubungan terlemah terdapat antara PDRB dan akses listrik. Penelitian ini menunjukkan bahwa memahami kemiskinan memerlukan pendekatan terhadap berbagai faktor yang saling berkaitan serta perlunya kebijakan pembangunan yang disesuaikan dengan karakteristik daerah masing-masing.