Claim Missing Document
Check
Articles

Found 2 Documents
Search

STOCK PRICE FORECASTING USING FUZZY C-MEANS AND TYPE-2 FUZZY TIME SERIES Satriani, Rineka Brylian Akbar; Farikhin, Farikhin; Surarso, Bayu
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp1365-1378

Abstract

Stock prices have unstable movements, so forecasting is needed to decide to invest appropriately according to the strategy. Fuzzy Time Series (FTS) uses fuzzy sets to forecast future time series values using historical data. However, interval partitioning in FTS needs to be considered as it can affect the forecasting results. FCM is applied to solve the problem of interval assignment in the universe of discourse. It allows the evaluation of the distribution of historical data and forming intervals of different sizes. Type 2 Fuzzy Time Series (T2FTS) is an extension of FTS to improve forecasting performance and refine fuzzy relationships. This research aims to improve forecasting accuracy using the Fuzzy C-Means (FCM)-T2FTS combination. This research uses daily data on BBRI stock prices from January 2023 to May 2024, with the variables used being close, high, and low prices. The results showed that determining the interval length using unequal length is more efficient than fixed interval length and can improve model performance, demonstrated from the MAPE values of T2FTS and FCM-T2FTS, which are 2.09% and 1.97%, respectively, the difference between the two MAPEs, is 0.12%. Hence, FCM-T2FTS is 12% more efficient than T2FTS. Therefore, FCM-T2FTS can improve forecasting accuracy.
Hybrid heuristic model and Fuzzy C-Means for stock forecasting using Type 2 Fuzzy Time Series Satriani, Rineka Brylian Akbar; Farikhin, Farikhin; Surarso, Bayu
Interdisciplinary Social Studies Vol. 4 No. 1 (2024): Regular Issue: October-December 2024
Publisher : International Journal Labs

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55324/iss.v4i1.742

Abstract

Forecasting is important in investment because of the inconsistent stock price pattern that requires in-depth analysis. This study proposes using a combination of heuristic and Fuzzy C-Means (FCM) models on Fuzzy Time Series Type 2. This study aims to obtain accurate forecasting results by using more data from the time series. The results show that the proposed model provides accurate forecasting. The FCM model is used to group data into clusters and form intervals. Heuristics also optimizes the performance of Fuzzy Logical Relationships Group (FLRG) by using up and down trends. Type 2 FTS is an extension of  Type 1 that uses union and intersection operators to refine fuzzy relations. The results show that the modification by combining FCM and heuristics in Type 2  FTS for stock forecasting provides excellent results with a MAPE value of 2,87%.