YouTube has become a platform for sharing content, including positive material and stereotypes that often trigger debates. One noteworthy phenomenon is the video of Arra, a toddler known for her remarkable communication skills. This uniqueness has drawn significant attention and sparked debates about the mismatch between her age and cognitive development. The diverse comments on Arra’s videos reflect sharply differing perspectives among netizens, making manual analysis highly challenging. Therefore, it is important to examine the topics discussed by netizens to understand the dominant issues emerging in these discussions. Through this approach, the public can gain insights, and parents may receive valuable input regarding child-rearing practices. The main objective of this study is to explore the effectiveness of the two methods and their combinations of text representations in identifying key topics within comments by comparing the coherence performance of the models. This research applies topic modeling to analyze comments using two primary approaches: Latent Dirichlet Allocation (LDA) and K-Means clustering. The study involves data collection through comment crawling, followed by text preprocessing and text representation using TF-IDF and GloVe embeddings. LDA and K-Means are then used to identify dominant topics appearing in the comments. The results show that LDA with TF-IDF achieved the highest coherence score of 0.662, although the resulting topics were still difficult to interpret due to overlap. Meanwhile, K-Means with GloVe 100D yielded a slightly lower coherence score of 0.6538 but outperformed in terms of interpretability. Therefore, K-Means with GloVe 100D is considered a more balanced approach in terms of both coherence and topic readability.