Kuswardana, Dendy Arizki
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Customer Transaction Clustering with K-Prototype Algorithm Using Euclidean-Hamming Distance and Elbow Method Kuswardana, Dendy Arizki; Prasetya, Dwi Arman; Trimono, Trimono; Diyasa, I Gede Susrama Mas; Awang, Wan Suryani Wan
International Journal of Advances in Data and Information Systems Vol. 6 No. 2 (2025): August 2025 - International Journal of Advances in Data and Information Systems
Publisher : Indonesian Scientific Journal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59395/ijadis.v6i2.1381

Abstract

This study aims to cluster customer transactions in a Japanese food stall using the K-Prototype Algorithm with a combination of Euclidean-Hamming Distance and the Elbow method. Facing intense industry competition, this study seeks to understand customer purchasing behavior to increase loyalty and sales. From 9.721 initial entries, 9.705 cleaned and transformed records were analyzed. K-Prototype was chosen because of its ability to handle numeric features (Total Sales, Product Quantity) and categorical features (Payment Method, Order Type, Day Category and Time Category). The combination of Euclidean-Hamming distances was used for distance measurement. The optimal number of clusters was determined using the Elbow method, with the results recommending three clusters as the most optimal number. A Silhouette score of 0.6191 indicates a Good Structure clustering result, effectively identifying three distinct customer grouping: "Loyal Regulars" (49.5%), "Casual Shoppers" (42.3%), and "Premium Shoppers" (8.2%). Statistical validity was also tested using ANOVA and Chi-Square, the results showed significant differences between the clusters in numerical and categorical variables with a p-value <0.0001. The clusters are statistically valid in both numerical and categorical aspects. These insights provide an understanding of customer characteristics and reveal a strategically valuable cluster for targeted marketing.
Comparison of Elbow and Silhouette Methods in Optimizing K-Prototype Clustering for Customer Transactions Kuswardana, Dendy Arizki; Prasetya, Dwi Arman; Trimono, Trimono; Diyasa, I Gede Susrama Mas
EDUTIC Vol 12, No 1: 2025
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/edutic.v12i1.29744

Abstract

This research presents a comparative analysis of the Elbow and Silhouette methods to identify the ideal number of clusters in applying the K-Prototypes algorithm for customer grouping using purchase transaction data. The K-Prototypes algorithm is employed due to its ability to handle both numerical and categorical data simultaneously. Customer purchase transaction data from the Point of Sale (POS) system is analyzed through preprocessing, feature transformation, and attribute segmentation stages before being clustered using the K-Prototypes algorithm. To identify the optimal cluster count, this study employs two methods: the Elbow and the Silhouette method. The results indicate that the Elbow method produces 2 clusters with a model evaluation score of 0.6368, while the Silhouette method suggests 2 clusters with a slightly lower score of 0.6186. In terms of computational efficiency, the Elbow method also demonstrates a faster processing time results highlight the significance of choosing an appropriate method for identifying the ideal number of clusters, ensuring it aligns with the specific goals of the analysis, whether emphasizing superior inter-cluster distinction or favoring a more parsimonious model configuration.