Rolenci, Rolenci
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Perbandingan Bunga Dalam Kredit Di PT. BPR Berkah Serumpun Mandiri Provinsi Kepulauan Bangka Belitung Nila Selviana; Meilis Tiara; Winiarsih, Winiarsih; Meidia Natasya; Rolenci, Rolenci; Reni Humairah
Jurnal Akuntansi Keuangan dan Bisnis Vol. 3 No. 1 (2025): April - Juni
Publisher : CV. ITTC INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study aims to analyze and compare the loan interest burden using three calculation methods: flat interest, compound interest, and effective interest rate at PT. BPR Berkah Serumpun Mandiri in Pangkalpinang, Bangka Belitung Province. A quantitative approach with a descriptive-comparative method was applied, using secondary data sourced from the official 2025 Multi-Purpose Loan brochure. Six loan samples were examined based on variations in loan amount and term. The findings indicate that the flat interest method results in fixed monthly installments of approximately 16%, yet fails to reflect the actual interest burden. The compound interest method shows a gradual decline in annual rates as the loan term increases. In contrast, the effective interest rate provides the most accurate representation of real borrowing costs, reaching up to 32% for shorter terms. These results emphasize the importance of transparent interest information and financial literacy to enable borrowers to make informed credit decisions.
Peramalan Penerimaan Bea Balik Nama Kendaraan Bermotor (BBNKB) di Provinsi Bangka Belitung Menggunakan Metode NNAR Hafiz, Muhamad Al; Adil, Nicu Rahmat; Kaban, Sri Ulina; Danil, Danil; Rolenci, Rolenci; Fahria, Izma
IDEI: Jurnal Ekonomi & Bisnis Vol 6, No 2 (2025): DECEMBER 2025
Publisher : Insan Doktor Ekonomi Indonesia (IDEI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38076/ideijeb.v6i2.541

Abstract

AbstrakBea Balik Nama Kendaraan Bermotor (BBNKB) adalah pajak yang dikenakan atas perubahan kepemilikan kendaraan bermotor, baik melalui transaksi jual beli, hibah, warisan, maupun peralihan lainnya. Perubahan ekonomi makro, kebijakan fiskal, inflasi, serta dinamika sosial masyarakat menyebabkan ketidakpastian dalam proyeksi pendapatan dari BBNKB. Sehingga diperlukan peramalan yang dapat memberikan gambaran tren masa depan berdasarkan pola historis. Metode NNAR dapat digunakan untuk mengidentifikasi pola nonlinier dan musiman, serta tidak memerlukan asumsi statistik yang terlalu ketat. Penelitian ini menggunakan metode NNAR untuk melakukan peramalan terkait data Penerimaan BBNKB di Provinsi Kepulauan Bangka Belitung. Metode NNAR mempertimbangkan kombinasi lag non-musiman, lag musiman, dan nauron di hidden layer dalam iterval tertentu. Model NNAR optimum diperoleh berdasarkan nilai RMSE (Root Mean Square Error) minimum sebesar 1.382.735.914 dengan model terbaik p (lag non-musiman) sebesar 3, P (lag musiman) sebesar 3, dengan Size (Neuron) sebesar 10. Model terbaik menunjukkan nilai MAPE (Mean Absolute Percentage Error) sebesar 2.28% yang menunjukkan bahwa model prediksi yang dperoleh memiliki akurasi yang sangat baik, berarti model NNAR yang digunakan akurat untuk melakukan peramalan Penerimaan BBNKB di Provinsi Bangka Belitung. Dengan model yang akurat dan akurasi peramalan yang sangat baik, sehingga dapat bermanfaat bagi berbagai pemangku kepentingan terkait penerimaan BBNKB di masa mendatang. Kata kunci: peramalan, BBNKB, NNAR AbstractMotor Vehicle Transfer Tax (BBNKB) was a tax imposed on changes in motor vehicle ownership, whether through sale and purchase transactions, grants, inheritance, or other transfers. Macroeconomic changes, fiscal policy, inflation, and social dynamics caused uncertainty in BBNKB revenue projections. Therefore, forecasting was needed to provide an overview of future trends based on historical patterns. The NNAR method was used to identify nonlinear and seasonal patterns and did not require overly strict statistical assumptions. This study used the NNAR method to forecast BBNKB revenue data in the Bangka Belitung Islands Province. The NNAR method considered a combination of non-seasonal lags, seasonal lags, and neurons in the hidden layer within a certain interval. The optimal NNAR model was obtained based on a minimum RMSE (Root Mean Square Error) value of 1,382,735,914 with the best model p (non-seasonal lag) of 3, P (seasonal lag) of 3, and Size (Neuron) of 10. The best model showed a MAPE (Mean Absolute Percentage Error) value of 2.28%, which indicated that the prediction model obtained had excellent accuracy, meaning that the NNAR model used was accurate for forecasting BBNKB revenue in the Province of Bangka Belitung. With an accurate model and excellent forecasting accuracy, it was useful for various stakeholders related to BBNKB revenue in the future. Keywords: forecasting, BBNKB, NNAR