Shahira, Fayza
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimasi Hyperparameter Deep Learning untuk Deteksi X-Ray Paru-Paru Menggunakan Bayesian Optimization Shahira, Fayza; Negara, Benny Sukma; Yanto, Febi; Sanjaya, Suwanto
JIEET (Journal of Information Engineering and Educational Technology) Vol. 9 No. 1 (2025)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jieet.v9n1.p53-63

Abstract

Penyakit paru-paru, seperti pneumonia dan COVID-19, merupakan ancaman serius terhadap kesehatan masyarakat, terutama jika diagnosisnya mengalami keterlambatan. Pendekatan deteksi dini melalui citra X-ray dada banyak digunakan, namun akurasinya sangat bergantung pada kemampuan sistem klasifikasi. Penelitian ini bertujuan untuk meningkatkan performa klasifikasi citra X-ray paru-paru dengan mengimplementasikan metode deep learning menggunakan arsitektur ResNet-101 yang dioptimasi menggunakan teknik Bayesian Optimization. Dataset yang digunakan dalam penelitian ini terdiri dari tiga kelas yaitu Normal, Pneumonia, dan COVID-19, masing-masing sejumlah 1.000 citra. Kinerja model hasil optimasi dibandingkan dengan model baseline pada tiga skenario split data yaitu 90:10, 80:20, 70:30. Hasil penelitian mengindikasikan bahwa model yang telah dioptimasi mampu meningkatkan performa pada seluruh metrik evaluasi mencakup akurasi, presisi, recall, spesifisitas, dan F1-score. Akurasi tertinggi tercatat sebesar 93,83% pada skenario 80:20, melampau akurasi baseline yang sebesar 91,83. Selain itu, kurva akurasi dan loss menunjukkan proses training yang stabil dan konvergen secara cepat tanpa indikasi overfitting yang signifikan. Penerapan Bayesian Optimization terbukti efektif dalam menemukan konfigurasi hyperparameter optimal yang berdampak pada peningkatan dalam tiap metrik evaluasi
Lung X-Ray Image Classification Using DenseNet-169 and Bayesian Optimization Shahira, Fayza; Negara, Benny Sukma
Knowbase : International Journal of Knowledge in Database Vol. 5 No. 1 (2025): June 2025
Publisher : Universitas Islam Negeri Sjech M. Djamil Djambek Bukittinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30983/knowbase.v5i1.9618

Abstract

The increasing prevalence of lung diseases caused by infections such as Pneumonia and COVID-19 highlights the urgent need for accurate and efficient early detection methods. This study aims to improve the classification performance of chest X-ray images using the DenseNet-169 deep learning architecture, with a focus on hyperparameter optimization through Bayesian Optimization. The dataset used consists of 3,000 chest X-ray images—1,000 each for Normal, Pneumonia, and COVID-19 classes—sourced from Mendeley Data and split with an 80:20 ratio for training and testing. The baseline DenseNet-169 model initially achieved an accuracy of 96.837%, although slight overfitting was observed. By applying Bayesian Optimization, several key hyperparameters—such as learning rate, number of epochs, batch size, and kernel size—were systematically optimized. The optimized model demonstrated an improved accuracy of 97.33%, with the most notable increase in the recall score of the Normal class, which rose by 3.19% to 97%, effectively reducing the false negative rate for healthy cases. In addition, the final model recorded a precision of 99% and a specificity of 99.50% for the COVID-19 class, indicating a strong discriminative capability in identifying critical conditions. Analysis of the training and validation curves showed good convergence, confirming the effectiveness of the optimization in reducing overfitting and enhancing the model's generalization ability. Overall, the results of this study demonstrate that the application of Bayesian Optimization significantly enhances the performance of DenseNet-169 in chest X-ray image classification. The resulting model is more balanced, robust, and reliable, showing great potential for integration into AI-based automated diagnostic systems in the field of respiratory healthcare.