Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Pattern Recognition untuk Ekstraksi Teks Plat Kendaraan Menggunakan Matching Correlation dan OCR Januar, Bagus; Harahap, Lailan Sofinah; Ananda, Surizky; Aznawi, Nasrul Mahruf
Jurnal Rekayasa Teknologi Informasi (JURTI) Vol 9, No 1 (2025): Jurnal Rekayasa Teknologi Informasi (JURTI)
Publisher : Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/jurti.v9i1.19904

Abstract

Pengenalan plat nomor kendaraan merupakan salah satu aplikasi penting dalam bidang pengolahan citra digital yang digunakan dalam berbagai sistem seperti manajemen parkir, pengawasan lalu lintas, dan tilang elektronik. Namun, akurasi sistem sering kali terganggu oleh variasi font karakter dan noise pada citra. Penelitian ini bertujuan untuk mengimplementasikan sistem pengenalan plat nomor kendaraan menggunakan pendekatan Pattern Recognition berbasis metode Template Matching Correlation dan Optical Character Recognition (OCR) pada MATLAB. Dataset yang digunakan terdiri dari 22 citra plat kendaraan dari berbagai negara serta template karakter huruf dan angka berukuran 24x42 piksel. Tahapan sistem meliputi akuisisi citra, pra-pemrosesan (grayscale dan binarisasi), deteksi plat dengan bounding box, segmentasi karakter, dan pengenalan karakter. Hasil pengujian menunjukkan bahwa metode Template Matching Correlation mampu mengenali karakter dengan akurasi yang bervariasi tergantung kesesuaian pola karakter, sedangkan OCR menunjukkan performa yang tidak konsisten pada beberapa citra dengan noise atau font tidak standar. Kesimpulannya, kombinasi kedua metode ini berpotensi meningkatkan akurasi sistem pengenalan plat nomor, terutama dalam kondisi citra yang menantang. Hasil penelitian ini dapat menjadi referensi dalam pengembangan sistem pengenalan karakter visual yang lebih baik.
Implementasi K-Means Clustering pada Citra Digital Tomat untuk Identifikasi Kondisi Segar dan Busuk Aznawi, Nasrul Mahruf; Setiadi, Muhammad Irham; Aina, Zarifah; Manullang, Setti; Rahmadiyah, Shafira Nur
Journal of Students‘ Research in Computer Science Vol. 6 No. 1 (2025): Mei 2025
Publisher : Program Studi Informatika Fakultas Ilmu Komputer Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/srtqmw49

Abstract

The manual identification of fresh and rotten tomatoes has still relied on human visual observation, which tends to be inconsistent and time-consuming. This study aimed to develop a tomato image classification system using the K-Means Clustering method based on color, shape, and texture features to automatically identify fresh and rotten conditions. The Dataset consisted of 500 tomato images for training and 60 tomato images for testing, equally representing fresh and rotten conditions. The process involved converting the images into L*a*b and grayscale formats, performing segmentation using K-Means, and extracting shape and texture features for the classification process. The testing results showed that the system successfully classified fresh and rotten tomatoes with an accuracy rate of 95%, with both precision and recall exceeding 93% for each class. These findings indicated that the K-Means method could be effectively applied in tomato image processing to support the sorting process of agricultural products. This research contributed to the development of a digital image-based classification system that could be integrated into smart agriculture systems.
PROTOTIPE APLIKASI PENCATATAN DIGITAL UNTUK PENGAJUAN DAN PENGAMBILAN DOKUMEN ADMINISTRASI SIPIL MENGGUNAKAN PENDEKATAN SDLC Aznawi, Nasrul Mahruf; Limbong, Hans Pran; Setiadi, Muhammad Irham; Armansyah, Armansyah
PENDIDIKAN SAINS DAN TEKNOLOGI Vol 12 No 2 (2025)
Publisher : STKIP PGRI Situbondo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47668/edusaintek.v12i2.1741

Abstract

Traditional recording process in managing the collection of population administration documents, as applied at the Population and Civil Registration Office (Disdukcapil), faces various challenges. These challenges include errors in the writing of the family card issuance number because the large number of incoming documents during operational hours sometimes causes a decrease in the concentration of officers which causes the writing of the same number on the document, in addition, searching for completed documents is less effective because you have to search for the name of the document owner from the many documents that have entered. This research proposes the development of a prototype digital recording application that aims to improve the efficiency of document management. The system is designed using the prototype model of the System Development Life Cycle (SDLC) framework, which is suitable for iterative and user-focused design. The methodology includes observation of traditional processes, collection of system requirements, design of Use Case diagrams, and user-friendly interface design using Canva. The expected result is an application prototype with a user interface design that has consistency in layout, color, ease of use with a success rate of 85% and the prototype meets the suitability of user needs up to 90%.