Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pengaruh Transformasi Ketahanan Mekanik Akibat Proses Quenching terhadap Material Pipa Minyak dan Gas pada Pengujian Bending: Penelitian Alexander Sebayang; Fida Hanum; Muhammad Ariyon; Fitriati; Ira Herawati; Efrata Tarigan; Idhamkamil; Liwat Tarigan
Jurnal Pengabdian Masyarakat dan Riset Pendidikan Vol. 2 No. 4 (2024): Jurnal Pengabdian Masyarakat dan Riset Pendidikan Volume 2 Nomor 4 (April 2024
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jerkin.v2i4.1610

Abstract

Pada perkembangan dan kemajuan dalam dunia minyak dan gas yang semakin pesat, pemilihan material dan penyambungan pada material tidak bisa dilepaskan. Dengan demikian, pemilihan material dan metode pengelasan pipa penyalur minyak dan gas bumi harus mengacu pada standar yang ada. Proses perlakuan panas quenching merupakan salah satu metode yang efektif untuk meningkatkan sifat mekanik material logam, khususnya pada kekuatan bending. Penelitian ini bertujuan untuk membandingkan kekuatan bending material dalam kondisi raw material dan setelah melalui proses quenching. Pengujian dilakukan pada dua jenis pembebanan, yaitu root bend dan face bend. Hasil pengujian menunjukkan bahwa material yang telah mengalami proses quenching memiliki nilai kekuatan bending yang lebih tinggi, masing-masing sebesar 1377,41 MPa untuk root bend dan 1339,43 MPa untuk face bend, dibandingkan dengan raw material yang memiliki kekuatan 1110,63 MPa dan 1141,67 MPa. Peningkatan ini menandakan bahwa proses quenching mampu meningkatkan ketahanan material terhadap beban lentur, baik pada sisi akar maupun permukaan spesimen. Fenomena ini diduga disebabkan oleh terbentuknya struktur martensit yang lebih keras dan padat akibat pendinginan cepat selama proses quenching. Temuan ini sejalan dengan berbagai literatur ilmiah yang menunjukkan bahwa transformasi mikrostruktur menjadi martensit berkontribusi signifikan terhadap peningkatan kekuatan mekanik material.
Analisis Solar Tracking pada Pembangkit Listrik Tenaga Surya Sebagai Sumber Tenaga Lampu Jalan: Penelitian Devanta Abraham Tarigan; Alexander Sebayang; Efrata Tarigan; Liwat Tarigan
Jurnal Pengabdian Masyarakat dan Riset Pendidikan Vol. 3 No. 4 (2025): Jurnal Pengabdian Masyarakat dan Riset Pendidikan Volume 3 Nomor 4 (April 2025
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jerkin.v3i4.2079

Abstract

The utilization of solar energy in Indonesia is still very low despite its huge potential. One of the causes of the low efficiency of solar panels is static installation that does not follow the direction of sunlight. To overcome this, an automatic solar tracker system was designed and built on a 20WP Solar Power Plant (PLTS) as a source of energy for street lights. This research uses a design and experiment method, which involves the development of an ESP32 microcontroller-based system, equipped with a GY-271 compass sensor, INA219 current and voltage sensors, and a DS3231 RTC module. A servo motor is used to automatically adjust the panel's position to follow the direction of the sun. This system is also equipped with an LM2596 Step-Down regulator and is programmed using the Arduino IDE, and can send real-time monitoring data via Wi-Fi to a smartphone. The experimental results show that the solar tracker system is able to increase electrical power up to more than a static panel at the same test time. The panel follows the movement of the sun from east to west, resulting in higher power efficiency throughout the day. Comparison of data between the tracker system and the panel still shows a significant difference in power at each hour of measurement. Testing has begun and has yielded an average power increase of 20.41% compared to static solar panels.
Pengaruh Variasi Arus Pengelasan 120 A, 130 A, 140 A, dan 150 A terhadap Kekuatan Tarik pada Material ST 37 dengan Metode Pengelasan Metal Inert Gas (MIG ) Alexander Sebayang; Efrata Tarigan; Liwat Tarigan
Jurnal Pustaka Cendekia Hukum dan Ilmu Sosial Vol. 2 No. 1 (2024): February - May 2024
Publisher : PT PUSTAKA CENDEKIA GROUP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70292/pchukumsosial.v2i1.58

Abstract

Welding is one of the inseparable parts of manufacturing technology. In the welding process, it is necessary to pay attention to the suitability of the welding construction in order to achieve optimal results. For this reason, welding needs to pay attention to several important things including welding efficiency, energy savings, energy savings, and of course low costs. In the need for high-quality welding such as joints on pressure vessels such as heat exchangers, pressure pipes and bridge construction, other steel structures, welding must be well planned. In this study, the welding method used is Metal Inert Gas (MIG), this is very closely related to electric current, toughness, welding defects, and cracks which generally have a fatal effect on the safety of the welded construction. The purpose of this study was to determine the characteristics of the influence of the welding results using Metal Inert Gas (MIG) using variations of 120 A, 130 A, 140 A, and 150 A currents on tensile strength, on St 37 steel plates. The welding results test used was the destructive test method, namely in the form of a tensile test. The parameters observed were the presence or absence of defects in the test piece of the welding results that were tested for tensile strength. If there is a defect in the form of a crack in the weld metal, referring to the BS EN ISO standard, it is determined whether the welding result is accepted or rejected. Test parameters and matters related to testing refer to the ASTM E8 standard. the greater the MIG welding current on ST 37 steel, the greater the ultimate stress value where the highest ultimate stress value (tu) N / mm2 is at a current of 150 A followed by 140 A, 130 A, 120 A. This is because the greater the welding current, the smoother the microstructure of the welding results will be