Claim Missing Document
Check
Articles

Found 3 Documents
Search

KLASIFIKASI PENYAKIT JANTUNG MENGGUNAKAN PENDEKATAN HYBRID INFORMATION GAIN dan BACKPROPAGATION NEURAL NETWORK (BPNN) Wahyudi, Azis; Nugroho, Haryo; Nur Seha, Harinto; Yulida, Rina
Jurnal Permata Indonesia Vol 16 No 1 (2025): Volume 16, Nomor 1, Mei 2025
Publisher : Politeknik Kesehatan Permata Indonesia Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59737/jpi.v17i1.347

Abstract

Heart disease is the leading cause of death worldwide. To detect the risk of heart disease early, an accurate and efficient classification method is needed. This study proposes a hybrid approach by combining Information Gain (IG) feature selection and the Backpropagation Neural Network (BPNN) classification algorithm. The dataset used is the Heart Disease Dataset from the UCI Repository, consisting of 303 patient records. Eight top features were selected using Information Gain. The BPNN model was trained using parameters hidden_layer_sizes=(16, 8), activation='relu', and learning_rate_init=0.01. A hidden layer with 16 and 8 neurons enables the network to learn complex patterns in the data. The ReLU (Rectified Linear Unit) activation function is used to speed up training convergence and avoid the vanishing gradient problem. The learning_rate_init=0.01 parameter controls the speed of weight updates during the learning process, affecting the model's stability and convergence. The evaluation results show that the model achieves 79.12% accuracy, 84.44% precision, 76.00% recall, 80.00% F1-Score, and 85.95% AUC. The 5-Fold Cross Validation yielded an average accuracy of 82.15%. These results indicate that the IG + BPNN hybrid approach provides good and stable classification performance in detecting heart disease. Keywords: Heart Disease, Information Gain, Backpropagation Neural Network, Classification, Data Mining
Optimalisasi Publikasi Ilmiah Bereputasi Internasional [Penyusunan Letter to Editor berbasis Artificial Intelegence]: [Drafting Letters to the Editor Using Artificial Intelligence] HARINTO NUR SEHA; Noor, Ahmad Yani; Yulida, Rina; Nofitriyani, Nofitriyani; Wahyudi, Azis
Jurnal Pengabdian Masyarakat Permata Indonesia Vol 5 No 2 (2025): Volume 5, Nomor 2, Oktober 2025
Publisher : Permata Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59737/jpmpi.v5i2.361

Abstract

The community service activity focused on increasing faculty publications through alternative channels such as Letters to the Editor in reputable journals, as a solution to the slow peer-review process for full articles. This activity was carried out through technical guidance that integrated the use of artificial intelligence technology, namely ChatGPT as a content writing tool, and Typeset.io as a reference search and formatting tool. The activity was held on Friday, July 25, 2025, in Room GW 6 of the Permata Indonesia Polytechnic, involving 19 lecturers from four study programs (Hospital Administration, Midwifery, Pharmacy, and Medical Records and Health Information). The evaluation method used a pre-test and post-test consisting of 10 questions to measure the increase in knowledge. The test results showed a significant increase in participants' knowledge after the technical training, as evidenced by an increase in the average score from 55 to 88,42. The discussion showed that the use of AI and digital tools can facilitate lecturers to contribute quickly to scientific discourse through LtE, while fulfilling their obligation to publish reputable works. This activity was concluded to have successfully improved lecturers' understanding and skills in publishing scientific ideas efficiently.
OPTIMALISASI PENERAPAN REKAM MEDIS ELEKTRONIK UNIT RAWAT INAP MENGGUNAKAN METODE ANALISIS SWOT DI RS PANTI NUGROHO Kelbulan, Stevania; Yulida, Rina; Nofitriyani; Nur Seha , Harinto; Wahyudi, Azis
Jurnal Permata Indonesia Vol 16 No 2 (2025): Volume 16 Nomor 2, November 2025
Publisher : Politeknik Kesehatan Permata Indonesia Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59737/jpi.v16i2.367

Abstract

Kemajuan teknologi informasi di bidang kesehatan mendorong rumah sakit bertransformasi menuju pelayanan yang efisien dan terintegrasi, salah satunya melalui penerapan rekam medis elektronik (RME). Namun, implementasi RME di unit rawat inap masih menghadapi kendala teknis maupun non teknis. Penelitian ini bertujuan merumuskan strategi optimalisasi penerapan RME di Rumah Sakit Panti Nugroho dengan pendekatan analisis SWOT. Penelitian menggunakan desain kualitatif deskriptif dengan metode studi kasus. Data diperoleh melalui wawancara mendalam, observasi, dan studi dokumentasi terhadap enam informan kunci. Hasil penelitian menunjukkan kekuatan penerapan RME mencakup kemudahan akses data pasien, percepatan pelayanan, pengurangan kesalahan pencatatan, serta integrasi dengan unit penunjang. Kelemahannya meliputi sistem hybrid, pelatihan yang belum merata, serta keterbatasan perangkat. Peluang berasal dari dukungan regulasi pemerintah, perkembangan teknologi informasi, serta kesesuaian SOP dengan aturan nasional. Ancaman yang dihadapi antara lain gangguan jaringan, keterbatasan server, dan ketergantungan teknologi. Kesimpulannya, penerapan RME di unit rawat inap bermanfaat bagi mutu pelayanan, namun perlu peningkatan infrastruktur, pemerataan pelatihan, serta penguatan keamanan data untuk keberlanjutan sistem.