Claim Missing Document
Check
Articles

Found 2 Documents
Search

Exploring User Experience in Adopting AI-Based Information Systems in Healthcare Environments Febri Ramanda; M. Ari Prayogo; Bagus Dwi Saputra; Muhammad Labib Jundillah
Jurnal ilmiah Sistem Informasi dan Ilmu Komputer Vol. 5 No. 2 (2025): Juli : Jurnal ilmiah Sistem Informasi dan Ilmu Komputer
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/juisik.v5i2.1437

Abstract

This study investigates the multifaceted factors shaping user experience in the adoption of AI-based information systems within healthcare settings. As artificial intelligence increasingly supports clinical decision-making processes, understanding the psychological and behavioral dimensions of user interaction becomes imperative. Utilizing a qualitative systematic literature review approach, this research synthesizes findings from scholarly articles published between 2020 and 2025. The analysis reveals three critical determinants influencing user experience: trust in AI, perceived usefulness, and ease of use. These factors play a central role in shaping technology acceptance, which acts as a mediating variable linking system attributes to overall user experience. Furthermore, digital literacy emerges as a moderating factor that either amplifies or diminishes the effects of the core determinants. To provide a comprehensive framework, the study integrates theoretical constructs from the Technology Acceptance Model (TAM), the Unified Theory of Acceptance and Use of Technology (UTAUT), and Trust in Automation Theory. The resulting conceptual model underscores the interplay between user perceptions, cognitive processes, and external technological factors. Key findings emphasize the significance of user-centered system design, transparent and interpretable AI communication, and targeted digital literacy initiatives to promote broader and more effective adoption. From a theoretical standpoint, the research contributes to the evolving literature by combining behavioral science perspectives with information system adoption theories. Practically, the study offers valuable insights for system developers, designers, and healthcare institutions aiming to implement AI technologies effectively. Recommendations include fostering transparency in AI decision-making, ensuring intuitive system interfaces, and offering digital competency training tailored to diverse user profiles. Overall, this study underscores that a nuanced understanding of user-related factors is essential for maximizing the potential benefits of AI in healthcare and achieving sustainable digital transformation in clinical environments.
Perancangan Alat Sortir Tomat Berdasarkan Tingkat Kematangan Menggunakan Sensor Tcs3200 dan Blynk Muhammad Boby Bachtiar Putra; Hery Ardiansyah; Bagus Dwi Saputra
Jurnal Pengembangan Teknologi Informasi dan Komunikasi (JUPTIK) Vol. 3 No. 2 (2025): JURNAL PENGEMBANGAN TEKNOLOGI INFORMASI DAN KOMUNIAKSI (JUPTIK)
Publisher : Prodi Teknologi Informasi Universitas Muhammadiyah Muara Bungo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52060/juptik.v3i2.3569

Abstract

Tomat merupakan komoditas hortikultura bernilai tinggi yang memerlukan penyortiran berdasarkan tingkat kematangan untuk menjaga kualitas selama distribusi dan pemasaran. Penyortiran manual sering kali tidak efisien dan rentan terhadap kesalahan akibat persepsi subjektif. Penelitian ini merancang dan mengimplementasikan prototipe alat sortir tomat otomatis berbasis IoT menggunakan sensor warna TCS3200 dan platform Blynk. Sistem mendeteksi nilai warna RGB dari permukaan tomat menggunakan sensor TCS3200, yang diproses oleh mikrokontroler ESP32 untuk mengklasifikasikan tomat ke dalam tiga kategori: mentah, matang, dan busuk. Motor servo mengarahkan tomat berdasarkan klasifikasi, sedangkan motor DC, yang dikendalikan oleh Arduino Uno melalui driver L298N, menggerakkan konveyor. Data sortir ditampilkan secara real-time melalui aplikasi Blynk sebagai dashboard pemantauan. Pengujian dengan 15 tomat dengan tingkat kematangan beragam menghasilkan akurasi 73,33%. Kesalahan terutama terjadi pada tomat busuk yang warnanya mirip dengan tomat matang. Untuk meningkatkan akurasi, disarankan menambahkan sensor warna TCS34725 dan database untuk menyimpan data sortir historis. Prototipe ini menunjukkan kemampuan sortir otomatis secara real-time, dengan potensi untuk aplikasi pertanian skala besar.