Claim Missing Document
Check
Articles

Found 3 Documents
Search

Integrasi Gamifikasi Dalam Perancangan Sistem: Tinjauan Metodologi, Kerangka Kerja, dan Pertimbangan Kritis Setiyawan, Risky Dwi; Hermawan, Doni; Herdiyanto, Oki; Rahmawati, Rahmawati
RIGGS: Journal of Artificial Intelligence and Digital Business Vol. 4 No. 2 (2025): Mei - Juli
Publisher : Prodi Bisnis Digital Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/riggs.v4i2.1536

Abstract

Gamifikasi, yaitu penerapan elemen desain permainan dalam konteks non-permainan, semakin banyak digunakan dalam pengembangan sistem informasi guna meningkatkan keterlibatan dan motivasi pengguna. Namun, keberhasilan implementasinya sangat bergantung pada pemilihan metodologi pengembangan, kerangka kerja desain, serta pemodelan sistem yang tepat. Pendekatan ad-hoc sering kali gagal mencapai tujuan jangka panjang dan berkelanjutan. Penelitian ini menyajikan tinjauan literatur sistematis untuk menganalisis dan membandingkan berbagai pendekatan dalam perancangan sistem berbasis gamifikasi. Melalui analisis isi terhadap literatur akademis terbaru, penelitian ini mengevaluasi efektivitas metodologi pengembangan seperti Waterfall, Agile, dan ADDIE. Selain itu, kerangka kerja teoretis seperti Self-Determination Theory (SDT) dan Flow Theory digunakan untuk menganalisis aspek motivasional dalam desain sistem. Hasil analisis menunjukkan bahwa pendekatan metodologi hibrida, seperti Structured-Agile, serta kerangka kerja desain terstruktur seperti 6D Framework dan Octalysis, memberikan hasil yang lebih efektif dan adaptif. Penelitian ini juga mengusulkan model pemetaan elemen gamifikasi ke dalam artefak Unified Modeling Language (UML) untuk menjembatani kesenjangan komunikasi antara perancang dan pengembang sistem. Di samping itu, dibahas pula tantangan utama dalam hal metrik evaluasi dan pertimbangan etis dalam desain gamifikasi. Kontribusi utama dari penelitian ini adalah sintesis komparatif yang menyediakan panduan berbasis bukti bagi peneliti dan praktisi dalam merancang sistem gamifikasi yang tidak hanya menarik dan fungsional, tetapi juga bertanggung jawab secara sosial dan etis.
PENGGUNAAN STRUKTUR DATA STACK DALAM PEMROGRAMAN C++ DENGAN PENDEKATAN ARRAY DAN LINKED LIST Setiyawan, Risky Dwi; Hermawan, Doni; Abdillah, Ahmad Fahmi; Mujayanah, Arsil; Vindua, Raditia
JUTECH : Journal Education and Technology Vol 5, No 2 (2024): JUTECH DESEMBER
Publisher : STKIP Persada Khatulistiwa Sintang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31932/jutech.v5i2.4263

Abstract

The background of this research is based on the importance of efficiency in implementing the Stack data structure, which is widely used in various programming applications such as mathematical expression evaluation, memory management, and undo/redo features. Two common approaches, namely Array and Linked List, each have their advantages and disadvantages in terms of execution efficiency, memory usage, and flexibility. This study compares the implementation of the Stack data structure using these two approaches, focusing on execution time efficiency, memory usage, and size flexibility. Using an experimental method, the implementation was conducted in C++ programming language through scenarios such as mathematical expression evaluation and undo/redo features. The results show that the Array approach is more efficient for static data access, while the Linked List excels in size flexibility and dynamic memory allocation for variable data. The study concludes that the choice of approach depends on the specific application requirements. These findings are expected to assist software developers in selecting the appropriate Stack implementation method.  
Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree C4.5 Berbasis Data Akademik dengan Validasi 10-Fold Nurhasanah, Nurhasanah; Setiyawan, Risky Dwi; Hermawan, Doni; Herdiyanto, Oki
TIN: Terapan Informatika Nusantara Vol 6 No 6 (2025): November 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/tin.v6i6.8662

Abstract

Predicting student graduation outcomes is an important indicator for evaluating academic quality and the effectiveness of learning processes in higher education. This study aims to analyze and predict student graduation status based on academic data using the C4.5 Decision Tree algorithm. The dataset consists of 100 students from the Informatics Study Program at Universitas Pamulang, with five main attributes: Grade Point Average (GPA), attendance percentage, assignment scores, midterm examination scores, and final examination scores. The research stages include data cleaning, data transformation, model construction, and model evaluation using the 10-fold cross-validation technique to ensure performance stability. The experimental results show an accuracy of 88.74%, precision of 91.79%, recall of 95.34%, and an AUC value of 0.94, indicating that the model demonstrates strong discriminatory ability in classifying graduation outcomes. GPA and final examination scores were identified as the most influential attributes in determining graduation predictions. The resulting predictive model is expected to serve as a foundation for developing an early warning system that enables universities to identify at-risk students and support data-driven decision-making to improve educational quality.