Claim Missing Document
Check
Articles

Found 2 Documents
Search

Proyeksi model WRF-Chem kualitas udara dan kondisi atmosfer di Sumatera Barat Nurpambudi, Ramadhan
Megasains Vol 7 No 1 (2016): Megasains Vol. 7 No.1 Tahun 2016
Publisher : Stasiun Pemantau Atmosfer Global Bukit Kototabang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46824/megasains.v7i1.208

Abstract

WRF-Chem adalah bentuk model WRF (Weather Research and Forecasting) yang dikombinasikan dengan perhitungan kimia yang digunakan untuk menyimulasikan emisi, transpor, percampuran, dan transformasi dari gas dan aerosol secara meteorologis. Penelitian ini menggunakan parameterisasi PBL10 (TEMF Scheme) dan PBL99 (MFR Scheme) yang kemudian dibandingkan dengan data observasi dari Stasiun Meteorologi Tabing Padang untuk data kecepatan angin dan dari GAW Kototabang untuk data karbon monoksida. Hasil yang didapat adalah parameter PBL yang paling mendekati keadaan sebenarnya untuk pengukuran kecepatan angin adalah PBL99 (TEMF Scheme). Walaupun begitu, masih perlu dilakukan penelitian lebih lanjut mengenai pemodelan di daerah Padang
An Artificial Neural Network-Based Geo-Spatial Model for Real-Time Flood Risk Prediction Using Multi-Source High-Resolution Data Aziz, RZ Abdul; Nurpambudi, Ramadhan; Herwanto, Riko; Hasibuan, Muhammad Said
Journal of Applied Data Sciences Vol 6, No 4: December 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i4.913

Abstract

Flood prediction presents a pressing challenge in disaster management, especially in regions vulnerable to extreme weather events. In response, this study offers a novel approach to flood risk prediction by developing a deep learning-based Geo-Spatial Artificial Neural Network (ANN). The model actively integrates high-resolution satellite imagery, meteorological data, and topographic indicators, such as rainfall, elevation, and land use to capture complex spatial and environmental relationships that influence flood risk. This study conducted data preprocessing using Principal Component Analysis (PCA) and normalization to ensure consistency across datasets. It built the ANN with multiple hidden layers and trained it using the backpropagation algorithm on historical flood data. Furthermore, it designed the ANN model with multiple hidden layers and trained it using the backpropagation algorithm. The model achieved a notable 92% prediction accuracy, significantly outperforming traditional flood prediction methods, which typically yield 75–85% accuracy. Conventional metrics were Mean Squared Error (1.41) and R-squared (0.94). It confirmed the model’s superior ability to predict high-risk flood zones. The model also effectively captured non-linear patterns that conventional statistical or deterministic methods often failed to detect. The results showed that the model generalizes well and adapts effectively, making it suitable for real-time and data-driven flood forecasting. By integrating artificial intelligence with geo-spatial analytics, this study offers a scalable, accurate, and efficient tool for early warning systems and risk management. It recommends that future research should focus on incorporating additional data sources and refining model training techniques to further enhance scalability and performance.