Claim Missing Document
Check
Articles

Found 2 Documents
Search

Systematic Literature Review of Digital Transformation KPIs in Industry 4.0 for Smart Manufacturing Pasaribu, Enita; Yuliani, Endah Tri; Fadli, Fahri; Debora, Fransisca
Proceeding Mercu Buana Conference on Industrial Engineering Vol 7 (2025): SMART AND SUSTAINABLE INDUSRIES : DRIVING LOW-EMISSIONS AND RENEWABLE ENERGY TRANSFORM
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/MBCIE.2025.34445

Abstract

Digitalisasi menghadirkan revolusi di sektor manufaktur yang mengacu pada transisi dari teknologi tradisional ke digital yang membentuk bagian integral dari Industri 4.0. Saat ini, inovasi digital terkait erat dengan "keberlanjutan" perusahaan. Smart Manufacturing dianggap sebagai paradigma baru yang membuat pekerjaan lebih cerdas dan lebih terhubung, menghadirkan kecepatan dan fleksibilitas melalui pengenalan inovasi digital. Smart Manufacturing adalah implementasi fisik dan operasional dari sebagian besar transformasi digital di sektor industri dan Digital Transformation KPIs adalah alat untuk mengukur keberhasilan implementasi tersebut. Penelitian ini dilakukan melalui pendekatan tinjauan pustaka sistematis menggunakan metode PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) untuk memastikan proses identifikasi, seleksi, dan analisis artikel yang transparan dan replicable. Data dari artikel-artikel tersebut kemudian dianalisis menggunakan perangkat lunak VOSViewer untuk memvisualisasikan hubungan antar kata kunci, penulis, atau konsep, sehingga memungkinkan identifikasi tren penelitian, klaster topik, serta area riset yang kurang terjamah. Tujuan artikel ini adalah untuk menyajikan literatur relevan yang membahas Digital Transformation KPIs di Industry 4.0 terhadap Smart Manufacturing dan mengidentifikasi tantangan utama, dengan menyajikan hasil tinjauan pustaka dari berbagai jurnal. Sebanyak 35 artikel dimasukkan dalam penelitian ini yang diterbitkan antara 2019 dan 2025. Artikel diidentifikasi berdasarkan tahun, negara, publikasi dan objek penelitian. Hasilnya menunjukkan bahwa Key Performance Indicators (KPIs) memainkan peran sentral dan krusial dalam keberhasilan implementasi Transformasi Digital dalam Industri 4.0 untuk Smart Manufacturing, khususnya di sektor manufaktur, dengan tujuan utama untuk meningkatkan efisiensi operasional, keberlanjutan, dan kinerja bisnis secara keseluruhan.
A Systematic Review of the Simplex Method in Profit-Oriented Optimization for Manufacturing Industries Pasaribu, Enita; Hernadewita, Hernadewita; Debora, Fransisca; Attaqwa, Yusita
IJIEM - Indonesian Journal of Industrial Engineering and Management Vol 6, No 3: October 2025
Publisher : Program Pascasarjana Magister Teknik Industri Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijiem.v6i3.35105

Abstract

Companies involved in production activities consistently strive to achieve their strategic objectives, with profit maximization being one of the primary goals for maintaining competitiveness and ensuring long-term business sustainability. This goal can be pursued through optimal production planning, one of which involves the application of the Simplex Method (SM). The Simplex Method is a mathematical algorithm designed to solve Linear Programming (LP) problems, which focus on optimizing a linear objective function while accounting for various resource-related constraints. This paper presents a systematic literature review on the implementation of the Simplex Method for profit optimization in the manufacturing sector. A total of 30 relevant research articles published between 2019 and 2024 were analyzed, sourced from reputable academic databases such as Google Scholar and ScienceDirect. The findings demonstrate that the Simplex Method offers substantial benefits, including improved resource allocation, cost reduction, enhanced decision-making capabilities, increased productivity, and support for data-driven operational efficiency. These advantages underscore the method’s effectiveness as a quantitative decision-support tool in strategic industrial planning. The review also highlights the broad applicability of the Simplex Method across various countries and industrial sectors, particularly in food, automotive, chemical, and textile manufacturing. As the manufacturing landscape transitions into the era of Industry 4.0, it is strongly recommended that future research explores the integration of the Simplex Method with emerging technologies such as Big Data analytics, Artificial Intelligence (AI), Cyber-Physical Systems (CPS), and Hybrid Optimization Models to further enhance industrial competitiveness, adaptability, and sustainability.