Harahap, Libelda Aldinaduma
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Clustering Analysis of MAMA 2024 Song of the Year Nominees Based on Musical Elements and Popularity Indicators Harahap, Libelda Aldinaduma; Sofro, A'yunin
ComTech: Computer, Mathematics and Engineering Applications Vol. 16 No. 2 (2025): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v16i2.12860

Abstract

As K-pop continues to dominate global music charts, understanding the factors behind the success of songs has become increasingly essential. This study explores how musical elements and popularity indicators reveal patterns among topperforming songs. A total of 57 songs nominated for the 2024 Song of the Year category were grouped using hierarchical cluster analysis. The genre variable was consolidated into six broader categories and converted into numerical labels. All variables are normalized using the Min-Max normalization method before clustering. The data includes musical elements such as genre, tempo, danceability, energy, and happiness, as well as popularity indicators like YouTube views and Spotify streams. The analysis employs single, complete, and average linkage methods. Among these, the average linkage method yields the best results, with an agglomerative coefficient value of 0.8167. Seven distinct clusters are identified: Cluster 1 features R&B and hip-hop styles with varied energy and rhythms; Cluster 2, the largest group, includes high-energy pop, hip-hop, and dance-pop tracks that are popular on streaming platforms; Cluster 3 contains indie and experimental tracks; Cluster 4 emphasizes high-energy stage performances; Cluster 5 is an outlier with experimental traits; Cluster 6 highlights R&B and funk with global appeal; and Cluster 7 includes emotional OSTs and ballads with slower tempos. By combining musical elements and popularity indicators, this research uncovers patterns of success in K-pop songs. These findings offer actionable insights for artists, producers, and marketers, providing a datadriven reference for creating music that resonates with modern audience preferences.
Penentuan Harga Opsi Foreign Exchange Menggunakan Model Heston Stochastic Volatility Harahap, Libelda Aldinaduma; Artiono, Rudianto
MATHunesa: Jurnal Ilmiah Matematika Vol. 13 No. 3 (2025)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathunesa.v13n3.p524-530

Abstract

Penelitian ini mengkaji penentuan harga opsi valuta asing USD/IDR menggunakan model Heston, yang menangkap volatilitas berubah-ubah (stokastik), dengan dua metode: transformasi Fourier dan simulasi Monte Carlo. Data nilai tukar USD/IDR periode 2020–2024 digunakan untuk analisis. Model Heston disesuaikan dengan memasukkan dua suku bunga berbeda untuk menghitung dinamika nilai tukar. Metode Fourier memberikan solusi semi-analitik yang efisien secara komputasi, sedangkan Monte Carlo menangkap dinamika stokastik melalui simulasi jalur acak. Hasil menunjukkan pola harga opsi call dan put yang konsisten terhadap nilai tukar, volatilitas, dan selisih suku bunga. Perbandingan menggunakan MAPE menunjukkan bahwa hasil keduanya relatif konsisten, terutama pada opsi put (galat <7%) dan opsi call (sekitar 14–17%). Penelitian ini memperluas penerapan model Heston dalam konteks opsi valuta asing dan menunjukkan bahwa Fourier dan Monte Carlo dapat digunakan secara saling melengkapi dalam penetapan harga derivatif.