Claim Missing Document
Check
Articles

Found 2 Documents
Search

APPLICATION OF EXTREME LEARNING MACHINE METHOD ON STOCK CLOSING PRICE FORECASTING PT ANEKA TAMBANG (PERSERO) TBK Apriliyanti, Rita; Satyahadewi, Neva; Andani, Wirda
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 2 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss2pp1057-1068

Abstract

Artificial neural networks are modeling methods that can capture complex input and output relationships. This method is widely used in forecasting and classification. However, in its application, there are some disadvantages in terms of low learning rate resulting in computational delay. Extreme Learning Machine (ELM) was introduced to overcome these problems. This method is believed to be able to produce more accurate forecasting results with a low level of forecasting error. In Indonesia, stocks are one of the most popular investments for investors. Stock prices tend to be volatile which is influenced by the amount of market supply and demand, so forecasting analysis is needed to minimize the risks that may occur. This research applies the ELM method to forecast the closing price of PT ANTM Tbk shares from January 1, 2018 - October 31, 2022. The data used is secondary data obtained from the official website https://id.investing.com. The ELM method is applied by dividing training data for ELM modeling and testing data used in the forecasting process. The model architecture of the ELM method uses a combination of inputs obtained from the PACF plot, hidden nodes with a range of 5-50, and one output layer. The results of this study show excellent forecasting accuracy in terms of forecasting. This is measured by the MAPE value of 0.0358. The architecture formed in the ELM process is one input, 31 hidden nodes, and one output. Forecasting the closing price of PT ANTM Tbk shares with 1-31-1 architecture produces a forecasting value that shows a low decline, but is quite stable.
Model Markov Switching Autoregressive pada Data Covid-19 di Indonesia Rizki, Setyo Wira; Martha, Shantika; Bartolomius, Bartolomius; Apriliyanti, Rita
Jambura Journal of Probability and Statistics Vol 5, No 1 (2024): Jambura Journal Of Probability and Statistics
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjps.v5i1.19429

Abstract

The Covid-19 pandemic has had a very influential impact on socio-economic conditions in Indonesia. Forecasting the number of Covid-19 cases is needed to support taking preventive action. The method that can be used to determine the number of Covid-19 cases is a forecasting method using the Markov Switching Autoregressive (MSAR) time series data model as an alternative for analyzing structural change data. This research uses Covid-19 confirmation data in Indonesia for the period March 2020-June 2021, with the aim of designing an MSAR model and calculating the magnitude of the transition opportunity in each state in the Covid-19 confirmation data in Indonesia. The MSAR model begins by describing the data and checking the stationarity of the data. After that, Box-Jenkins modeling was carried out to test heteroskedasticity and structural changes. Next, the MSAR model parameters were estimated and the transition matrix was formed. This research shows that the best MSAR model formed is the MS (2)-AR (5) model, with a static transition probability value in state 1 of 0.981330. However, it appears that there is a chance of 0.018670 for the Covid-19 confirmation condition to move to state 2. Testing in the case of state 2 produces a transition chance of 0.980991 in state 2, with a transition chance of Covid-19 confirmation changing to state 1 of 0.019009.