Claim Missing Document
Check
Articles

Found 5 Documents
Search

Invertibility of Generalized Space-Time Autoregressive Model with Random Weight Yundari, Yundari; Rizki, Setyo Wira
CAUCHY Vol 6, No 4 (2021): CAUCHY: Jurnal Matematika Murni dan Aplikasi
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v6i4.11254

Abstract

The generalized linear process accomplishes stationarity and invertibility properties. The invertibility property must be having a series of convergence conditions of the process parameter. The generalized Space-Time Autoregressive (GSTAR) model is one of the stationary linear models therefore it is necessary to reveal the invertibility through the convergence of the parameter series. This article studies the invertibility of model GSTAR(1;1) with kernel random weight. The result shows that the model GSTAR(1;1) under kernel random weight fulfills the invertibility property and obtains a finite order of Generalized Space-Time Moving Average (GSTMA) process. The other result obtained is the time order of the finite orde  . On the Triangular kernel resulted in the relatively great value n, so that it does not apply to the kernel with a finite value n.
Analisis Kelayakan Kredit Menggunakan Classification Tree dengan Teknik Random Oversampling Vebriyanti, Lo Mei Ly; Martha, Shantika; Andani, Wirda; Rizki, Setyo Wira
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi EULER: Volume 12 Issue 1 June 2024
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/euler.v12i1.24182

Abstract

Credit is providing money or bills based on the agreement between a bank and another party. Lending is inseparable from bad credit risk, so credit analysis must be conducted on prospective debtors before approving a proposed loan. This research aims to analyze creditworthiness using a Classification Tree as a classification method with Random Oversampling to overcome imbalanced data. This study uses secondary data on the status of debtors from a bank in West Kalimantan. Research data amounted to 800 data samples consisting of collectability variables as target variables and 10 independent variables, namely limit, rate, tenor, total installments, age, salary, premium and admin, agency, type credit, and type need. The Classification Tree method with Random Oversampling is used to overcome imbalanced data. Classification begins with data preprocessing, then the data is divided into training and test data with proportions of 70:30, 80:20 and 90:10 for each treatment without Random Oversampling and with Random Oversampling. Next, a classification model is formed using training data, and the classification model is validated using test data. After that, an overall evaluation of the model is carried out to determine the best model used in the classification process. Based on the research results, the best model is the model Classification Tree with Random Oversampling in proportion 70:30, with an accuracy value of 89.17%, specificity of 75.00%, and recall of 89.66%. The model can be used to classify current and non-current debtor data. The most influential variable in classifying debtor status is the total installment variable.
PENERAPAN METODE GEOGRAPHICALLY WEIGHTED PANEL REGRESSION (GWPR) PADA KASUS KEMISKINAN DI INDONESIA Martha, Shantika; Yundari, Yundari; Rizki, Setyo Wira; Tamtama, Ray
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 2 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (392.215 KB) | DOI: 10.30598/barekengvol15iss2pp241-248

Abstract

To analyze the factor affecting poverty during several periods by considering some geographical factors, we can use a geographically weighted panel regression (GWPR) method. GWPR is a combination of the geographically weighted regression (GWR) model and the panel regression model. The research conducts to identify the factors affecting the percentage of poor people in 34 provinces in Indonesia during 2015-2019. The results show that a suitable GWPR model is a fixed-effect model (FEM) with an exponential adaptive kernel function. Referring to the model, the province is divided into four groups based on variables having a significant effect on the percentage of poor people. That factors causing the poor people percentage in Indonesia are the poor people percentage aged above 15 years old and unemployment, the people percentage aged above 15 years old and employed in the agricultural sector, the literacy rate of the poor aged between 15 to 55 years old, and the life expectancy rate. Keywords: fixed effect model, exponential adaptive kernel.
Model Markov Switching Autoregressive pada Data Covid-19 di Indonesia Rizki, Setyo Wira; Martha, Shantika; Bartolomius, Bartolomius; Apriliyanti, Rita
Jambura Journal of Probability and Statistics Vol 5, No 1 (2024): Jambura Journal Of Probability and Statistics
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjps.v5i1.19429

Abstract

The Covid-19 pandemic has had a very influential impact on socio-economic conditions in Indonesia. Forecasting the number of Covid-19 cases is needed to support taking preventive action. The method that can be used to determine the number of Covid-19 cases is a forecasting method using the Markov Switching Autoregressive (MSAR) time series data model as an alternative for analyzing structural change data. This research uses Covid-19 confirmation data in Indonesia for the period March 2020-June 2021, with the aim of designing an MSAR model and calculating the magnitude of the transition opportunity in each state in the Covid-19 confirmation data in Indonesia. The MSAR model begins by describing the data and checking the stationarity of the data. After that, Box-Jenkins modeling was carried out to test heteroskedasticity and structural changes. Next, the MSAR model parameters were estimated and the transition matrix was formed. This research shows that the best MSAR model formed is the MS (2)-AR (5) model, with a static transition probability value in state 1 of 0.981330. However, it appears that there is a chance of 0.018670 for the Covid-19 confirmation condition to move to state 2. Testing in the case of state 2 produces a transition chance of 0.980991 in state 2, with a transition chance of Covid-19 confirmation changing to state 1 of 0.019009.
Pelatihan Infografis Untuk Pegawai PPN Pemangkat Martha, Shantika; Debataraja, Naomi Nessyana; Rizki, Setyo Wira; Imro'ah, Nurfitri; Perdana, Hendra; Kusnandar, Dadan; Satyahadewi, Neva; Tamtama, Ray
Insan Cita : Jurnal Pengabdian Kepada Masyarakat Vol 7, No 1 (2025): Februari 2025-Insan Cita: Jurnal Pengabdian Kepada Masyarakat
Publisher : Universitas Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32662/insancita.v7i1.2658

Abstract

PPN Pemangkat sebagai sentra perikanan mempunyai beberapa keunggulan, yaitu lokasi strategis, dekat dengan fishing ground dan daerah pemasaran. Dengan berbagai keunggulan tersebut diharapkan dapat meningkatkan kualitas perekonomian masyarakat sekitar. Pentingnya ketersediaan informasi tentang PPN Pemangkat untuk masyarakat dapat menjadi faktor pendukung untuk meningkatkan kualitas perekonomian masyarakat yang terhubung dengan keberadaan PPN Pemangkat seperti nelayan. Infografis sangat diperlukan untuk penyajian data di PPN Pemangkat. Baik itu data tentang kapal, nelayan maupun hasil tangkapan. Infografis dapat menyederhanakan informasi yang rumit, sehingga informasi data lebih dapat dipahami untuk semua kalangan. Untuk itu pelatihan infografis bagi pegawai PPN Pemangkat sangat diperlukan. Hasil dari kegiatan ini yaitu bertambahnya pengetahuan serta kemampuan pegawai PPN Pemangkat dalam mengolah data melalui pembuatan infografis menggunakan excel.