Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimization of Body Mass Index Classification Using Machine Learning Approach for Early Detection of Obesity Risk Nasien, Dewi; Owen, Steven; Fenly, Fenly; Johanes, Johanes; Lombu, Frendly; Leo, Leo; Baharum, Zirawani
Journal of Applied Business and Technology Vol. 6 No. 3 (2025): Journal of Applied Business and Technology
Publisher : Institut Bisnis dan Teknologi Pelita Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35145/jabt.v6i3.201

Abstract

This study aims to optimize the classification of obesity risk at an early stage using Principal Component Analysis (PCA), which is an important technique in machine learning. PCA is used to reduce the dimensionality of data, maintain important information without losing data, and has the advantage of reducing complexity which usually increases the risk of overfitting. The obesity dataset will be classified using algorithms such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree, Random Forest, Gradient Boosting Linear, and XGBoost. Specifically, each algorithm is chosen because of its respective advantages: KNN for nonlinear data, SVM for high-dimensional data, and Random Forest and XGBoost for complex data patterns. Evaluation is carried out using metrics such as accuracy, precision, recall, and F1-score to assess the performance of the algorithm. The results show that the Random Forest and XGBoost algorithms provide the best performance in terms of accuracy, especially when all dataset features are used without PCA reduction. This study is expected to be a consideration in determining the best algorithm for obesity classification, supporting early detection, and facilitating decision making in health analysis.
Penerapan Linear Discriminant Analysis Untuk Meningkatkan Kinerja Algoritma Support Vector Machine Gusrianty, Gusrianty; Fenly, Fenly; Jollyta, Deny; Erlin, Erlin; Putri, Ramalia Noratama; Oktariana, Dwi
Jurnal Informatika: Jurnal Pengembangan IT Vol 10, No 4 (2025)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v10i4.8772

Abstract

Obesity is a complex chronic disease influenced by various factors, such as genetic, environmental, and lifestyle, which is characterized by excess body weight due to the excessive accumulation of body fat. With the rapid advancement of technology and digitalization across all sectors, data has become increasingly vital, as large datasets generate valuable information. However, a key challenge in data analysis is addressing redundancy, noise, and high dimensionality, which can affect the performance of machine learning algorithms. This study aims to investigate the effectiveness of combining Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) in enhancing the accuracy and efficiency of high-dimensional data classification, particularly in predicting obesity levels. LDA is employed to reduce data dimensionality while retaining the most relevant features, whereas SVM is utilized as the classification algorithm to predict obesity levels based on patterns identified within the dataset. The research was conducted using a dataset consisting of 779 training samples and 195 testing samples. The results reveal that the combination of LDA and SVM achieved a classification accuracy of up to 99%, with a 50% reduction in data dimensionality and a computation speed of 0,0696 second. Moreover, computation time was significantly reduced, indicating that LDA not only facilitates data simplification but also improves the overall efficiency of the classification process.