Claim Missing Document
Check
Articles

Found 3 Documents
Search

Investigating a SMOTE-Tomek Boosted Stacked Learning Scheme for Phishing Website Detection: A Pilot Study Ugbotu, Eferhire Valentine; Emordi, Frances Uchechukwu; Ugboh, Emeke; Anazia, Kizito Eluemunor; Odiakaose, Christopher Chukwufunaya; Onoma, Paul Avwerosuoghene; Idama, Rebecca Okeoghene; Ojugo, Arnold Adimabua; Geteloma, Victor Ochuko; Oweimieotu, Amanda Enaodona; Aghaunor, Tabitha Chukwudi; Binitie, Amaka Patience; Odoh, Anne; Onochie, Chris Chukwudi; Ezzeh, Peace Oguguo; Eboka, Andrew Okonji; Agboi, Joy; Ejeh, Patrick Ogholuwarami
Journal of Computing Theories and Applications Vol. 3 No. 2 (2025): in progress
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.14472

Abstract

The daily exchange of informatics over the Internet has both eased the widespread proliferation of resources to ease accessibility, availability and interoperability of accompanying devices. In addition, the recent widespread proliferation of smartphones alongside other computing devices has continued to advance features such as miniaturization, portability, data access ease, mobility, and other merits. It has also birthed adversarial attacks targeted at network infrastructures and aimed at exploiting interconnected cum shared resources. These exploits seek to compromise an unsuspecting user device cum unit. Increased susceptibility and success rate of these attacks have been traced to user's personality traits and behaviours, which renders them repeatedly vulnerable to such exploits especially those rippled across spoofed websites as malicious contents. Our study posits a stacked, transfer learning approach that seeks to classify malicious contents as explored by adversaries over a spoofed, phishing websites. Our stacked approach explores 3-base classifiers namely Cultural Genetic Algorithm, Random Forest, and Korhonen Modular Neural Network – whose output is utilized as input for XGBoost meta-learner. A major challenge with learning scheme(s) is the flexibility with the selection of appropriate features for estimation, and the imbalanced nature of the explored dataset for which the target class often lags behind. Our study resolved dataset imbalance challenge using the SMOTE-Tomek mode; while, the selected predictors was resolved using the relief rank feature selection. Results shows that our hybrid yields F1 0.995, Accuracy 0.997, Recall 0.998, Precision 1.000, AUC-ROC 0.997, and Specificity 1.000 – to accurately classify all 2,764 cases of its held-out test dataset. Results affirm that it outperformed bench-mark ensembles. Result shows the proposed model explored UCI Phishing Website dataset, and effectively classified phishing (cues and lures) contents on websites.
Phishing Website Detection via a Transfer Learning based XGBoost Meta-learner with SMOTE-Tomek Agboi, Joy; Emordi, Frances Uche; Odiakaose, Christopher Chukwufunaya; Idama, Rebecca Okeoghene; Jumbo, Evans Fubara; Oweimieotu, Amanda Enaodona; Ezzeh, Peace Oguguo; Eboka, Andrew Okonji; Odoh, Anne; Ugbotu, Eferhire Valentine; Onoma, Paul Avwerosuoghene; Ojugo, Arnold Adimabua; Aghaunor, Tabitha Chukwudi; Binitie, Amaka Patience; Onochie, Christopher Chukwudi; Ejeh, Patrick Ogholuwarami; Nwozor, Blessing Uche
Journal of Fuzzy Systems and Control Vol. 3 No. 3 (2025): Vol. 3 No. 3 (2025)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v3i3.325

Abstract

The widespread proliferation of smartphones has advanced portability, data access ease, mobility, and other merits; it has also birthed adversarial targeting of network resources that seek to compromise unsuspecting user devices. Increased susceptibility was traced to user's personality, which renders them repeatedly vulnerable to exploits. Our study posits a stacked learning model to classify malicious lures used by adversaries on phishing websites. Our hybrid fuses 3-base learners (i.e. Genetic Algorithm, Random Forest, Modular Net) with its output sent as input to the XGBoost. The imbalanced dataset was resolved via SMOTE-Tomek with predictors selected using a relief rank feature selection. Our hybrid yields F1 0.995, Accuracy 1.000, Recall 0.998, Precision 1.000, MCC 1.000, and Specificity 1.000 – to accurately classify all 3,316 cases of its held-out test dataset. Results affirm that it outperformed benchmark ensembles. The study shows that our proposed model, as explored on the UCI Phishing Website dataset, effectively classified phishing (cues and lures) contents on websites.
EcoSMEAL: Energy Consumption with Optimization Strategy via a Secured Smart Monitor-Alert Ensemble Aghaunor, Tabitha Chukwudi; Agboi, Joy; Ugbotu, Eferhire Valentine; Onoma, Paul Avweresuoghene; Ojugo, Arnold Adimabua; Odiakaose, Christopher Chukwufunaya; Eboka, Andrew Okonji; Ezzeh, Peace Oguguo; Geteloma, Victor Ochuko; Binitie, Amaka Patience; Orobor, Anderson Ise; Nwozor, Blessing Uche; Ejeh, Patrick Ogholuwarami; Onochie, Christopher Chukwudi
Journal of Fuzzy Systems and Control Vol. 3 No. 3 (2025): Vol. 3 No. 3 (2025)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v3i3.319

Abstract

The global demand for automation that seeks the efficient consumption and usage of energy via the adoption of embedded-fit management solutions that yield improved performance with reduced consumption has become the new norm. These explore sensor-based units in their own right with eco-friendly platforms that raise germane environmental, health, and consumption regulation(s) concerns that have today become a global issue, even when they proffer improved life standards that replace traditional solutions. Our study posits an embedded sensor design to observe environmental conditions associated with energy consumption by residential or home appliances. It utilizes a machine learning scheme and algorithm to analyze the total energy consumed by each appliance and delivers optimal consumption that reduces energy waste. The system was tested across multiple parameters and found to yield desired effectiveness, reliability, and efficiency. Our utilization of the ESP8266 and ThingSpeak is able to handle extensive inputs without significant delays or data losses. Results affirms the system ability to maintain stable performance even with more devices connected to the unit.