Ananta, Sasmita Bagus Sang Kesuma
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Integrasi Smart Camera dan AI untuk Mendukung Agribisnis Kopi Berkelanjutan di Wilayah Pedesaan Indonesia Kiranawati, Titi Mutiara; Aripriharta, Aripriharta; Zubaidah, Siti; Devi, Mazarina; Salwa, Nur Fadhila Rasyida; Ananta, Sasmita Bagus Sang Kesuma; Bagaskoro, Muhammad Cahyo
Abditeknika Jurnal Pengabdian Masyarakat Vol. 5 No. 2 (2025): Oktober
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/abditeknika.v5i2.9602

Abstract

Kendala utama agribisnis kopi pedesaan di Lembah Dilem Wilis, Trenggalek, adalah kualitas biji yang tidak konsisten akibat sortir manual. Sistem sortir otomatis berbasis Smart Camera dan AI dikembangkan untuk klasifikasi real-time biji kopi berdasarkan visual seperti warna dan ukuran. Dirancang dengan Raspberry Pi, sensor kamera, dan algoritma CNN , penerapannya melibatkan kolaborasi peneliti dan petani lokal secara partisipatif. Kami menggunakan 500 data latih yang diakuisisi dari aplikasi untuk pelatihan model CNN kami. Uji lapangan menunjukkan sistem ini mengurangi waktu sortir dari 45 menjadi 15 menit per kg, meningkatkan akurasi seleksi dari 75% menjadi 94%, dan melipatgandakan produktivitas harian. Analisis confusion matrix heatmap mengonfirmasi akurasi klasifikasi tinggi , dan sensor PZEM menunjukkan keandalan pemantauan daya. Meskipun meningkatkan efisiensi, tantangan adopsi petani kecil dan variasi kondisi biji kopi menjadi area pengembangan lebih lanjut. Evaluasi kuantitatif sebelum dan sesudah implementasi, menggunakan sampel biji kopi lokal, menegaskan bahwa integrasi teknologi ini meningkatkan efisiensi, mutu produksi, dan memberdayakan petani menuju agribisnis berkelanjutan.   The primary challenge for rural coffee agribusiness in Dilem Wilis Valley, Trenggalek, is inconsistent bean quality due to manual sorting. An automated sorting system based on Smart Camera and AI was developed for real-time classification of coffee beans based on visual parameters like color and size. Designed with a Raspberry Pi, camera sensor, and CNN algorithm , its implementation involved participatory collaboration between researchers and local farmers. We used 500 training data acquired from the application for our CNN model training. Field trials showed the system reduced sorting time from 45 to 15 minutes per kg, increased selection accuracy from 75% to 94%, and doubled daily productivity. Confusion matrix heatmap analysis confirmed high classification accuracy , and PZEM sensors demonstrated reliable power monitoring. While enhancing efficiency, challenges in small-scale farmer adoption and varied bean conditions present areas for further development. Quantitative evaluation before and after implementation, using local coffee bean samples, affirmed that this technology integration boosts efficiency, product quality, and empowers farmers towards sustainable agribusiness.
Smart Low Head Picohydro System with QHBM Optimization for Rural Electrification and Innovation ARIPRIHARTA, ARIPRIHARTA; HADI, MOKH. SHLIHUL; MUFTI, NANDANG; MAHARANI, SATIA NUR; BAGASKORO, MUHAMMAD CAHYO; ANANTA, SASMITA BAGUS SANG KESUMA; RESWANA, PRIA EKA
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 13, No 4: Published November 2025
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v13i4.425

Abstract

This study develops a low-head smart picohydro system for rural electrification optimized using the Queen Honey Bee Migration (QHBM) algorithm. The system includes a propeller turbine, axial generator, charge controller, inverter, and battery. QHBM optimizes flow rate, head, system efficiency, output power, and energy cost to achieve the best technical and economic performance. For comparison, Particle Swarm Optimization (PSO) is used, known for its fast convergence but prone to local optima. Results show that at a 0.65 m head, QHBM produces 546.68 W, higher than PSO (546.48 W) and manual calculation (530 W), with 50% faster convergence. The proposed system supports sustainable and affordable energy access for off-grid communities and offers potential for renewable energy startup innovation.