Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Effect of Quality of Work Life and Human Resource Development on the Performance of Employees in the Bandung City Health Department Asep Wahyu; Rima Rahmayanti
Jurnal Ilmiah Multidisiplin Indonesia (JIM-ID) Vol. 4 No. 09 (2025): Jurnal Ilmiah Multidisplin Indonesia (JIM-ID) October 2025
Publisher : Sean Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The study aims to analyze Quality of work life, human resource development and employee performance at the Bandung City Health Office, as well as the influence of Quality of work life and human resource development on employee performance at the Bandung City Health Office. This study is a quantitative study with a causal approach that explains the causal relationship between research variables using hypothesis testing. Respondents in this study were 303 employees of the Bandung City Health Office and UPT within the Bandung City Health Office. Data collection used a questionnaire measured using a Likert scale. Instrument testing used validity and reliability tests. Data analysis used multiple linear regression analysis, classical assumption tests and hypothesis tests. The results of the study showed that (1) human resource development had a significant effect on employee performance, (2) quality of work life had a significant effect on employee performance. (3) human resource development and quality of work life had a significant effect on employee performance.
PREDIKSI TREN HARGA EMAS TERHADAP DOLAR (XAU/USD) PADA METATRADER 5 MENGGUNAKAN RANDOM FOREST Nuraulia Maruf, Gilang; Asep Wahyu; Ate Mulyana; Hadi Prasetyo Utomo; Hendra Sandi Firmansyah
Jurnal Informatika dan Rekayasa Elektronik Vol. 8 No. 2 (2025): JIRE November 2025
Publisher : LPPM STMIK Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36595/jire.v8i2.1719

Abstract

Penelitian ini menganalisis efektivitas model Random Forest untuk memprediksi tren harga XAU/USD dalam platform MetaTrader 5. Sifat volatil pasar forex, ditambah dengan meningkatnya partisipasi pedagang ritel, membutuhkan alat prediksi yang akurat. Studi ini menjawab kebutuhan ini dengan memanfaatkan kemampuan algoritma Random Forest untuk menangani data non-linear berdimensi tinggi. Model ini dilatih dan diuji menggunakan data historis XAU/USD dari tahun 2014 hingga 2024, dengan memasukkan indikator teknikal sebagai fitur. Hasilnya menunjukkan akurasi prediktif yang tinggi (98,4%), presisi (98,7%), dan recall (98,9%), menunjukkan efektivitas model dalam memperkirakan pergerakan harga. Matriks confusion lebih lanjut memvalidasi temuan ini, mengungkapkan tingkat false positive dan false negative yang rendah. Penelitian ini memberikan alat praktis bagi para pedagang di platform MetaTrader 5 dan memajukan penerapan kecerdasan buatan dalam analisis pasar keuangan.