Claim Missing Document
Check
Articles

Found 2 Documents
Search

Geospatial Validation for Task Letter Automation in Tomohon City: Validasi Geospasial untuk Otomatisasi Surat Tugas di Kota Tomohon Moningkey, Efraim; Atuna, Annisa Salsabilah; Santa, Kristofel
Indonesian Journal of Innovation Studies Vol. 26 No. 4 (2025): October
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/ijins.v26i4.1745

Abstract

General background. Digital transformation is central to modernizing public services and improving administrative reliability. Specific background. At the Tomohon City Land Office, manual task letter issuance and attendance monitoring often cause delays and errors. Knowledge gap. Previous research largely focused on GPS-based attendance systems without integrating automated task letter generation. Aims. This study aims to develop a web-based information system integrating task letter automation and geospatial attendance validation using the Haversine algorithm. Results. The system automatically generates task letters, embeds geolocation data, and verifies officer attendance within a specified radius in real time. Testing confirmed accurate distance calculations, reduced administrative errors, and improved task monitoring. Novelty. The integration of Haversine-based geospatial validation with administrative automation in the land sector represents a unique contribution to digital governance. Implications. The system provides a scalable model for modernizing bureaucratic processes and supports Indonesia’s e-government initiatives through accurate, real-time monitoring of field activities. Highlight Development of a web-based system integrating task letter automation and geospatial validation Accurate attendance verification through the Haversine algorithm in real time Supports bureaucratic modernization and e-government initiatives in the land sector KeywordWeb Based Information System, Haversine Algorithm, Task Assignment, Attendance Monitoring, E-Government
Sistem Klasifikasi Tingkat Kematangan Cabai Rawit Menggunakan Algoritma K-Nearest Neighbor (KNN) Ananta, Asti; Kumajas, Sondy C.; Moningkey, Efraim
IKRA-ITH Informatika : Jurnal Komputer dan Informatika Vol. 9 No. 3 (2025): IKRAITH-INFORMATIKA Vol 9 No 3 November 2025
Publisher : Fakultas Teknik Universitas Persada Indonesia YAI

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Cabai rawit melrulpakan salah satul komoditas pelrtanian belrnilai elkonomi tinggi di Indonelsia, namuln pelnelntulan tingkat kelmatangannya masih dilakulkan selcara manulal olelh peltani selhingga selring melnyelbabkan keltidakkonsistelnan dalam prosels paneln. Pelnellitian ini melngelmbangkan sistelm klasifikasi tingkat kelmatangan cabai rawit melnggulnakan algoritma K-Nelarelst Nelighbor (KNN) belrbasis fitulr warna HSV (Hulel, Satulration, Valulel). Data citra cabai dipelrolelh langsulng dari pelrkelbulnan dan diprosels mellaluli tahap prelprocelssing, elkstraksi fitulr HSV, pellatihan modell, hingga implelmelntasi dalam aplikasi belrbasis welb melnggulnakan Flask. Sistelm mampul melngklasifikasikan cabai kel dalam tiga katelgori, yaitul melntah, seltelngah matang, dan matang. Modell KNN delngan nilai k=3 melnghasilkan akulrasi selbelsar 86% belrdasarkan pelnguljian melnggulnakan data ulji. Hasil pelnellitian melnulnjulkkan bahwa algoritma KNN dapat digulnakan selcara elfelktif dalam klasifikasi tingkat kelmatangan cabai rawit selrta dapat melndulkulng prosels paneln dan distribulsi selcara lelbih objelktif dan konsisteln.