AM Hayat, Muhyiddin
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

IMPLEMENTASI HYBRID LEXICON-BASED DAN SVM UNTUK KLASIFIKASI ANALISIS SENTIMEN TERHADAP PELATIHAN BBPSDMP KOMINFO MAKASSAR Alam, Nur; Faisal, Muhammad; Bakti, Rizki Yusliana; Syafaat, Muhammad; Syamsuri, Andi Makbul; AM Hayat, Muhyiddin; Anas, Andi Lukman
PROGRESS Vol 17 No 2 (2025): September
Publisher : P3M STMIK Profesional Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56708/progres.v17i2.473

Abstract

The evaluation of government training programs is often hindered by manual analysis of unstructured qualitative feedback, making the process inefficient and subjective. This study aims to implement and evaluate a sentiment classification model using a hybrid Lexicon-Based and Support Vector Machine approach to analyze participants’ perceptions of the Vocational School Graduate Academy training organized by BBPSDMP Kominfo Makassar, as well as to compare the performance of a standard SVM model with a model optimized using Particle Swarm Optimization. This quantitative research employs 2,313 unstructured review data, which undergo text preprocessing, initial lexicon-based labeling, and TF-IDF feature extraction before being classified using an SVM with an RBF kernel. The results show that the SVM model optimized with PSO consistently outperforms the standard model across all four evaluation aspects, with the most significant accuracy improvement observed in the instructor category from 84.71% to 89.02% and in the assessor category reaching 91.46%. PSO optimization has proven effective in enhancing the model’s ability to identify negative sentiments, which represent the minority class. The hybrid approach with PSO optimization is capable of producing a more accurate and balanced classification system, with practical implications as an objective automated evaluation tool.