Claim Missing Document
Check
Articles

Found 12 Documents
Search

Public Sentiment Analysis on the November 2025 Flood Disaster in Aceh Using Natural Language Processing and Lexicon-Based Approach Erwanda, Ade Putra; Khaidar, Al; Asrianda, Asrianda; Fikry, Muhammad; Khaldun, Ibnu
Journal of Artificial Intelligence and Software Engineering Vol 5, No 4 (2025): Desember (On Progress)
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i4.8481

Abstract

Bencana banjir yang melanda Provinsi Aceh pada November 2025 merupakan salah satu bencana hidrometeorologi besar yang berdampak luas terhadap kehidupan masyarakat. Banjir terjadi di 16 kabupaten/kota dan mengakibatkan hampir 120 ribu jiwa terdampak, puluhan ribu warga mengungsi, serta kerusakan signifikan pada permukiman dan infrastruktur. Peristiwa ini memicu respons publik yang masif di media sosial, khususnya Instagram. Penelitian ini bertujuan untuk menganalisis sentimen respons masyarakat terhadap bencana tersebut menggunakan pendekatan Natural Language Processing (NLP) berbasis lexicon. Data diperoleh melalui proses data crawling terhadap 2.790 komentar Instagram, yang selanjutnya diproses melalui tahapan text cleaning, case folding, tokenization, stopword removal, dan stemming. Hasil analisis menunjukkan dominasi sentimen positif sebesar 62,51%, diikuti sentimen netral 24,98% dan negatif 12,51%. Temuan ini menunjukkan adanya apresiasi, harapan, serta kritik masyarakat terhadap penanganan bencana, dan dapat menjadi bahan evaluasi bagi pemangku kebijakan dalam meningkatkan strategi penanganan dan komunikasi bencana berbasis data.
Single Tuition Fee Classification Using Light Gradient Boosting Machine with Confusion Matrix Analysis Khaidar, Al; Nurdin, Nurdin; Fajriana, Fajriana
Journal of Artificial Intelligence and Software Engineering Vol 5, No 4 (2025): Desember (On Progress)
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i4.8479

Abstract

Uang Kuliah Tunggal merupakan sistem pembiayaan pendidikan tinggi yang ditetapkan berdasarkan kemampuan ekonomi mahasiswa. Penetapan UKT yang masih dilakukan secara manual berpotensi menimbulkan subjektivitas dan ketidaktepatan klasifikasi. Penelitian ini bertujuan untuk mengembangkan model klasifikasi UKT berbasis data menggunakan metode Light Gradient Boosting Machine (LightGBM). Dataset yang digunakan terdiri dari 10.000 data mahasiswa Politeknik Negeri Lhokseumawe yang telah melalui tahap prapemrosesan dan transformasi fitur. Model dilatih menggunakan pembagian data latih dan data uji sebesar 80:20, serta dievaluasi menggunakan metrik akurasi, classification report, confusion matrix, dan 10-Fold Cross Validation. Hasil pengujian menunjukkan bahwa model LightGBM mencapai akurasi sebesar 98% pada data uji. Pengujian 10-Fold Cross Validation menghasilkan rata-rata akurasi sebesar 99,21% dengan standar deviasi 0,29%, yang menunjukkan stabilitas dan kemampuan generalisasi yang sangat baik. Hasil ini membuktikan bahwa LightGBM efektif dan andal untuk mendukung penetapan UKT yang lebih objektif dan berbasis data.