Claim Missing Document
Check
Articles

Found 6 Documents
Search

Information Systems And Information Technology Strategies In The EMIS (Education Management Information System) Khaidar, Al; Azzanna, Maghriza; Rahmad, Rahmad; Hasibuan, Arnawan; Daud, Muhammad; Nurdin, Nurdin
Journal of Artificial Intelligence and Software Engineering Vol 5, No 3 (2025): September
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i3.7639

Abstract

Perkembangan teknologi informasi telah memengaruhi pengelolaan data pendidikan melalui sistem informasi manajemen, salah satunya Education Management Information System (EMIS). Penelitian ini bertujuan untuk menganalisis efektivitas implementasi EMIS di MAN 1 Aceh Timur serta faktor-faktor yang memengaruhi keberhasilannya. Metode penelitian menggunakan pendekatan kualitatif interaktif dengan studi kasus, melibatkan kepala madrasah, operator EMIS, dan pihak terkait sebagai informan. Analisis dilakukan menggunakan metode SWOT dan value chain untuk mengevaluasi kekuatan, kelemahan, peluang, dan ancaman implementasi sistem. Hasil penelitian menunjukkan EMIS memiliki potensi meningkatkan efektivitas pengelolaan data, integrasi informasi, dan mendukung pengambilan keputusan. Namun, sistem mengalami kendala teknis, terutama gangguan server dengan frekuensi bervariasi setiap bulan, puncaknya terjadi pada Maret dan Juli masing-masing 5 kali, dengan durasi rata-rata meningkat dari 1,8 jam di Januari menjadi 2,5 jam di Juli dan terendah 1,0 jam di April. Evaluasi menekankan perlunya peningkatan infrastruktur, pelatihan operator, dan koordinasi antar pihak terkait untuk mengoptimalkan kinerja EMIS di masa depan.
Implementation Of Static Routing And Quality Of Service For Optimization Of Network Traffic Management On Cisco Routers Hermansyah, Hermansyah; Khaidar, Al; Nurdin, Nurdin; Kurnia, Sri
Journal of Artificial Intelligence and Software Engineering Vol 5, No 3 (2025): September
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i3.7381

Abstract

Di era digital, kebutuhan akan jaringan yang andal dan efisien menjadi krusial untuk mendukung pertukaran data yang lancar. Lalu lintas data yang padat dapat menurunkan kualitas layanan, menyebabkan keterlambatan transmisi, dan meningkatkan risiko kehilangan paket. Penelitian ini mengimplementasikan metode static routing dan Quality of Service (QoS) sebagai strategi manajemen lalu lintas jaringan untuk meningkatkan efisiensi dan stabilitas komunikasi pada router Cisco. Metode yang digunakan meliputi konfigurasi static routing untuk mengatur jalur data secara manual dan penerapan QoS untuk memprioritaskan jenis layanan berdasarkan parameter latency dan packet loss. Hasil pengujian melalui simulasi dua router Cisco menunjukkan konektivitas yang stabil, dengan waktu respons rendah dan tanpa kehilangan paket signifikan. Nilai latency tercatat di bawah 150 ms dan packet loss kurang dari 1%, memenuhi kategori “Sangat Bagus” menurut standar TIPHON. Kombinasi static routing dan QoS terbukti efektif dalam mengoptimalkan manajemen lalu lintas jaringan.
Sentiment Analysis Of Instagram Comments On The BPS Province X Account Using The Naive Bayes Algorithm Based On Machine Learning Jessika, Jessika; Khaidar, Al; Nurdin, Nurdin; Muliana, Syarifah
Journal of Artificial Intelligence and Software Engineering Vol 5, No 3 (2025): September
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i3.7815

Abstract

Sentiment analysis is an approach in natural language processing that aims to identify and categorize user opinions or attitudes towards an entity based on text data. The data used consists of the last 500 uploaded captions obtained through the Phantombuster tool. The analysis stages include data crawling, preprocessing (removal of duplicate and empty data, tokenization, stopword removal, and case folding), printing using the Naïve Bayes algorithm, and visualization of the classification results. Based on the processing results, it was found that the majority of the data was classified as neutral (97.65%), while the rest was divided into positive (1.57%) and negative (0.78%) categories, with a model accuracy of 94%. Although the model accuracy is relatively high, the dominance of the neutral class indicates an imbalance in data distribution (imbalanced data) which can affect the quality of the generalization model.
Analysis Of Customer Understanding Level Of The E-Policy System In The Sinar Mas Online Insurance Application In The Lhokseumawe Branch Work Area Muliana, Syarifah; Nurdin, Nurdin; Alqhifari, Azka; Khaidar, Al; Jessika, Jessika
Journal of Artificial Intelligence and Software Engineering Vol 5, No 3 (2025): September
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i3.7824

Abstract

Digital transformation in the insurance industry is driving companies to adopt electronic systems, including the implementation of e-policies as a replacement for physical policy documents. This study aims to analyze the level of customer understanding of the e-policy system on the Sinar Mas Online Insurance application in Lhokseumawe branch. The research method used is a quantitative approach with data collection techniques through distributing questionnaires to 100 active customers. The results show that most customers are aware of the existence of e-policies, but still face obstacles in understanding their functions, legality, and how to access documents through the Sinar Mas Online application. Factors such as age, education level, and experience using digital services have been shown to influence the level of customer understanding. This study recommends the need for continuous education and the development of a more intuitive application interface to improve digital literacy and user convenience in accessing e-policies. These findings are expected to provide evaluation material for companies in improving their information systems and digital communication strategies for customers.
Comparative Analysis of Random Forest Algorithms, Artificial Neural Networks, and Logistic Regression in Breast Cancer Prediction with Machine Learning Approach M. Ali, Rahmadi; Nurdin, Nurdin; Khaidar, Al; Azzanna, Maghriza; Rusadi, Athirah
Journal of Artificial Intelligence and Software Engineering Vol 5, No 3 (2025): September
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i3.7028

Abstract

Perkembangan teknologi informasi khususnya kecerdasan buatan dan machine learning, telah meningkatkan efektivitas deteksi dini penyakit seperti kanker payudara. Namun, tingginya angka kejadian dan kematian akibat kanker payudara di Indonesia masih menjadi tantangan besar, terutama karena rendahnya tingkat deteksi dini dan banyak pasien datang dalam stadium lanjut. Penelitian ini membandingkan performa tiga algoritma machine learning, yaitu Random Forest, Artificial Neural Network (ANN), dan Logistic Regression, dalam memprediksi diagnosis kanker payudara berdasarkan akurasi, efisiensi komputasi, dan kestabilan kinerja. Evaluasi dilakukan dengan classification report dan validasi silang 10-Fold Cross Validation. Hasil menunjukkan Logistic Regression memiliki akurasi rata-rata tertinggi sebesar 77,56% dan waktu eksekusi tercepat, yaitu 0,024897 detik, menandakan efisiensi dan kestabilan yang baik. Random Forest memberikan akurasi classification report 80% dan nilai AUC tertinggi 0,89, menunjukkan keunggulan dalam diskriminasi kelas. ANN memiliki performa terendah dengan akurasi validasi silang 74,64% dan recall rendah untuk kelas positif. Logistic Regression direkomendasikan sebagai model paling seimbang, sementara Random Forest sebagai alternatif akurasi tinggi.Kata Kunci: Random Forest, Artificial Neural Networks, Logistic Regression, Breast Cancer Prediction, Machine Learning
Classification of Health Indicators for Diabetes Mellitus Prediction Using a TabTransformer Model on Clinical Tabular Data Khaidar, Al; Kurnia, Sri
Journal of Computer Science and Research (JoCoSiR) Vol. 2 No. 2 (2024): April: Computer Science
Publisher : Asosiasi Perguruan Tinggi Informatika dan Ilmu Komputer (APTIKOM) Provinsi Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.65126/jocosir.v2i2.54

Abstract

Diabetes mellitus is a non-communicable disease with a continuously increasing global prevalence and impacts quality of life and long-term economic burden; therefore, data-driven early detection is crucial to prevent clinical complications. This study aims to develop a diabetes prediction model using the TabTransformer architecture by utilizing a clinical dataset from Kaggle containing 100,000 patient profiles with more than 35 relevant numerical and categorical attributes. The research stages include preprocessing to remove potential leakage features, target and feature separation, numerical normalization, and categorical feature embedding. The TabTransformer model is applied for binary classification (diagnosed_diabetes) by utilizing a self-attention mechanism to capture latent interactions between tabular features, and is evaluated using accuracy, precision, recall, F1-score, and ROC AUC metrics. The results show competitive performance with an accuracy of 82.55%, a diabetes class F1-score of 0.8527, and a ROC AUC value of 0.9009, indicating the model's discriminatory ability to reliably distinguish diabetic and non-diabetic patients. Based on these results, the TabTransformer architecture has been proven effective for processing large-scale clinical tabular data and is worthy of consideration in the implementation of an artificial intelligence-based medical decision support system for predicting chronic diseases, especially diabetes mellitus.