Claim Missing Document
Check
Articles

Found 5 Documents
Search

Evolution, Challenges, Mobile Application Tools and Framework: A Literature Review Meilvin Wijaya; Ade Kurniawan
POSITIF : Jurnal Sistem dan Teknologi Informasi Vol 4 No 1 (2018): POSITIF : Jurnal Sistem dan Teknologi Informasi
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/positif.v4i1.542

Abstract

Mobile apps have come in dramatically in various fields and have changed people's lives. Developing effective mobile applications has become a significant problem for companies today to expand services or generate, and build a direct relationship with customers. Developing a mobile app requires challenging and testing various aspects. To deepen the knowledge of mobile apps requires a literature review. This paper provides basic knowledge about mobile applications and then continued evolution of mobile applications and mobile application challenges continued testing strategies and tools and frameworks for automation of android testing
Sejarah, Penerapan, dan Analisis Resiko dari Neural Network: Sebuah Tinjauan Pustaka Cristina Cristina; Ade Kurniawan
Jurnal Informatika: Jurnal Pengembangan IT Vol 3, No 2 (2018): JPIT, Mei 2018
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v3i2.890

Abstract

A neural network is a form of artificial intelligence that has the ability to learn, grow, and adapt in a dynamic environment. Neural network began since 1890 because a great American psychologist named William James created the book "Principles of Psycology". James was the first one publish a number of facts related to the structure and function of the brain. The history of neural network development is divided into 4 epochs, the Camelot era, the Depression, the Renaissance, and the Neoconnectiosm era. Neural networks used today are not 100 percent accurate. However, neural networks are still used because of better performance than alternative computing models. The use of neural network consists of pattern recognition, signal analysis, robotics, and expert systems. For risk analysis of the neural network, it is first performed using hazards and operability studies (HAZOPS). Determining the neural network requirements in a good way will help in determining its contribution to system hazards and validating the control or mitigation of any hazards. After completion of the first stage at HAZOPS and the second stage determines the requirements, the next stage is designing. Neural network underwent repeated design-train-test development. At the design stage, the hazard analysis should consider the design aspects of the development, which include neural network architecture, size, intended use, and so on. It will be continued at the implementation stage, test phase, installation and inspection phase, operation phase, and ends at the maintenance stage.
Penerapan Framework OWASP dan Network Forensics untuk Analisis, Deteksi, dan Pencegahan Serangan Injeksi di Sisi Host-Based Kurniawan, Ade
Jurnal Telematika Vol. 14 No. 1 (2019)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v14i1.267

Abstract

The Internet has changed the world. The penetration of internet users in 1995 is only 1 percent of the world population, while in 2018, the figure reached 70 percent or 4.5 billion users. Simultaneously, it was reported that eight of the top ten web sites in the world were at a critical point of vulnerability to attacks by injection methods, such as Cross-Site Scripting (XSS) and Structured Query Language Injection (SQLi). Furthermore, XSS and SQLi attacks can be used by certain parties to steal information or specific purposes. In this paper, we research by conducting attack simulations, analyzing packet data, and finally conducting prevention at host-based. Initial simulations of attacks using social engineering attack techniques by sending a phishing email. At this stage of attack simulation, the attack includes information gathering, webcam screenshots, keyloggers, and spoofers. Furthermore, at the stage of analysis, we do with the approach of network forensics with evidence collection techniques using live forensics acquisition. The final stage is prevent (patching) by creating an application or add-on on the browser side by name, XSSFilterAde. This research contribution offers a broad and in-depth study of how to do a simulation, analysis, and finally prevent. Furthermore, the method of protecting the user or host- based solution in the browser application functions to filter, disable plugins, notify, block, and reduce injection attacks.Internet telah mengubah dunia. Internet telah mengubah wajah dunia. Penetrasi pengguna internet di tahun 1995 hanya 1 persen dari populasi dunia, sedangkan di tahun 2018 angkanya telah mencapai 60 persen atau 4,5 miliar pengguna. Secara bersamaan, dilaporkan delapan dari sepuluh situs web teratas di dunia berada pada titik kritis kerentanan terhadap serangan dengan metode injeksi, seperti: Cross-Site Scripting (XSS) dan Structured Query Language Injection (SQLi). Selanjutnya, serangan XSS dan SQLi dapat digunakan oleh pihak tertentu untuk mencuri informasi atau untuk tujuan tertentu. Dalam makalah ini, penelitian dilakukan denganmensimulasikan serangan, analisis paket data, dan terakhir melakukan pencegahan di host-based atau di sisi pengguna. Simulasi awal serangan menggunakan social engineering attack dengan cara mengirim sebuah phishing email. Pada tahapan simulasi serangan ini, serangan meliputi pengumpulan informasi, screenshot webcam, keyloggers, dan spoofer. Selanjutnya, di tahapan analisis, kami melakukan pendekatan network forensics dengan teknik pengambilan barang bukti menggunakan metode live forensics acquisition. Tahapan terakhir adalah mencegah (menambal) dengan membuat sebuah aplikasi atau add-on di sisi browser dengan nama XSSFilterAde. Kontribusi penelitian ini menawarkan sebuah studi secara luas dan mendalam tentang bagaimana melakukan sebuah simulasi,analisis, dan, terahir, melakukan pencegahan (prevent). Lebih jauh, metode solusi perlindungan kepada pengguna atau host-based dalam aplikasi browser berfungsi untuk memfilter, menonaktifkan plugin, memberi tahu, memblokir, dan mengurangi serangan injeksi.
Analisis Unauthorized Access Point Menggunakan Teknik Network Forensics Paramita, Felicia; Madeline, Madeline; Alvina, Olga; Sentia, Rahel Esther; Kurniawan, Ade
Jurnal Telematika Vol. 14 No. 2 (2019)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v14i2.287

Abstract

In this era, free access points are found available in various places. But this freedom comes with a price, and only a few users really understand the risk. In a recent survey, 70% of tablet owners and 53% of smartphone owners stated that they use public wifi hotspots. The biggest threat to public wifi security is how a hacker positions himself as a liaison between victims and Authorized Access Points. To do this the hacker creates an Unauthorized Access Point (Fake Access Point). We took a pentester/attacker POV in this artikel for educational purposes, so that users may know the stages of Fake Access Point attack based on Kali Linux, Fluxion. For the digital evidence analysis stage, we used the customized OSCAR (Obtain information, Strategies, Collect Evidence, Analyze and Report) methods, where attacking is the stage for preparation, determining which wifi Access Points is going to be the target of the attack, and carrying out attacks. While, analysis is the stage of analyzing the steps of attack and how to distinguish between AAP and UAP. The results of our research are that after determining the target, the pen tester/attacker will use aircrack-ng on Fluxion to get a handshake, create a fake web interface, then launch a deauth all attack, also known as DoS, to AAP so that the victim / client cannot connect with the AAP and switch to Fake Access Point. The fake web interface will then ask the victim to enter the password, where after the password is found, the pen tester/attacker can see it through Fluxion. As a precautionary measure, the difference between a Fake Access Point and an Authorized Access Point is found in the presence or absence of the padlock symbol (Android) or an exclamation point (Windows 10).Pada zaman ini, free access point telah tersedia di berbagai tempat. Namun, nyatanya kebebasan ini memiliki harga, dan hanya sedikit pengguna yang memahami benar risikonya. Ancaman terbesar terhadap kemanan wifi publik adalah bagaimana seorang hacker memposisikan dirinya sebagai penghubung antar korban dan Authorized Access Point. Untuk melakukan hal tersebut, hacker membuat Unauthorized Access Point (Fake Access Point). Dalam artikel ini pen tester/attacker diambil sudut pandang sebagai dengan tujuan edukasi, agar pengguna mengetahui tahapan serangan Fake Access Point dengan tool Fluxion berbasis OS Kali Linux. Tahapan analisis bukti digital menggunakan metode OSCAR (Obtain Information, Strategies, Collect Evidence, Analyze and Report) yang telah di kostumisasi, di mana attacking adalah tahapan untuk persiapan menentukan target wifi Access Point yang akan diserang serta menjalankan serangan. Analysis adalah tahapan menganalisa langkah penyerangan serta bagaimana cara membedakan Authorized Access Point dengan Unauthorized Access Point. Hasil penelitian yang dilakukan setelah menentukan target, pentester/attacker akan menggunakan Aircrack-ng pada Fluxion untuk mendapatkan handshake, membuat web interface palsu, kemudian melancarkan serangan Deauth all, dikenal DoS ke AAP, sehingga korban/client tidak dapat terkoneksi dan masuk ke Fake Access Point. Web interface palsu kemudian akan meminta korban untuk memasukkan password. Setelah password ditemukan, maka pen tester/attacker dapat melihatnya melalui Fluxion. Sebagai langkah pencegahan, perbedaan antara Fake Access Point dan yang Authorized Access Point ditemukan pada ada tidaknya simbol gembok (Android) atau tanda seru (Windows 10).
Ketahanan Pembelajaran Mesin terhadap Adversarial examples: Metodologi dan Pertahanan Kurniawan, Ade; Aprilia, Ely; Aulia, Achmad Indra; Siregar, Amril Mutoi; Goeirmanto, Leonard
Faktor Exacta Vol 18, No 2 (2025)
Publisher : LPPM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/faktorexacta.v18i2.26078

Abstract

This paper examines the vulnerability of machine learning models to adversarial examples: inputs that are subtly manipulated to deceive a model into making incorrect predictions. Although deep learning has demonstrated remarkable performance across various tasks, the security of these models remains a significant challenge. This study provides a comprehensive review of various methods for generating adversarial examples, a classification of attack techniques, and corresponding defense strategies, including both active and passive approaches. The findings indicate that a combination of several defense techniques is significantly more effective in enhancing model robustness compared to any single approach. This research is expected to provide a foundation for the development of more secure and reliable machine learning models for critical applications.