Claim Missing Document
Check
Articles

Found 3 Documents
Search

Perencanaan Strategis Sistem Informasi Pada Lembaga Amil Zakat Menggunakan Analisis SWOT Berbasis Lima Faktor Seni Perang Sun Tzu Berdasarkan Anita Cassidy Novettralita, Ucky Pradestha; Isnanto, R. Rizal; Widodo, Catur Edi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 5: Oktober 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107222

Abstract

Lembaga Amil Zakat (LAZ) memanfaatkan strategi Sistem Informasi/Teknologi Informasi (SI/TI) untuk meningkatkan daya saing. Seni Perang Sun Tzu telah banyak digunakan dalam penelitian untuk menyusun strategi bisnis dan strategi penjualan. Sayangnya, belum ada penelitian dengan menggunakan Seni Perang Sun Tzu untuk perencanaan strategis Sistem Informasi (SI). Kontribusi penelitian adalah penyusunan analisis SWOT berbasis lima faktor Seni Perang Sun Tzu sehingga dapat menjadi dasar untuk penelitian selanjutnya. Tujuan dari penelitian ini adalah untuk mengidentifikasikan kondisi lingkungan internal bisnis dan eksternal bisnis sehingga memberikan rekomendasi strategi kunci kepada LAZ dalam domain strategi bisnis, strategi SI/TI, dan strategi infrastruktur SI/TI berdasarkan analisis SWOT berbasis lima faktor Seni Perang Sun Tzu yang disusun berdasarkan metode Anita Cassidy. Beberapa strategi kunci yang dihasilkan dari peneitian ini adalah promosi dan edukasi zakat melalui media sosial dan media daring lainnya; menyediakan teknologi untuk memudahkan masyarakat membayar zakat dengan membuat aplikasi seperti Mobile Zakat, Customer Relationship System (CRS); dan mengembangkan kemampuan dalam memanfaatkan teknologi 5G dan teknologi baru.   Abstract Amil Zakat Institution (LAZ) uses Information System/Information Technology (IS/TI) strategy to improve competitiveness. Sun Tzu's Art of War has been widely used in research to develop business strategies and sales strategies. Unfortunately, there has been no research using Sun Tzu's Art of War for Information System (IS) strategic planning. The contribution of the research is the preparation of a SWOT analysis based on the five factors of Sun Tzu's Art of War so that it can be the basis for future research. This research aims to identify the condition of the internal business and external business environment to provide key strategy recommendations to LAZ in the domains of business strategy, SI/TI strategy, and SI/TI infrastructure strategy based on SWOT analysis based on five factors Sun Tzu's Art of War compiled based on the Anita Cassidy method. Some of the key strategies obtained from this research are the promotion and education of zakat through social media and other online media; providing technology to make it easier for people to pay zakat by creating applications like Mobile Zakat application, Customer Relationship System (CRS); and developing capabilities in utilizing 5G technology and new technologies.
MODEL MACHINE LEARNING TREE BASED UNTUK DETEKSI SERANGAN PADA SISTEM CHARGING ELECTRIC VEHICLE Novettralita, Ucky Pradestha; Amirulbahar, Azis; Ramadhany, Emha Diambang; Arifin, M. Agus Syamsul
Jurnal Teknologi Informasi Mura Vol 17 No 2 (2025): Jurnal Teknologi Informasi Mura DESEMBER
Publisher : LPPM UNIVERSITAS BINA INSAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32767/jti.v17i2.2755

Abstract

Cyberattack detection in Electric Vehicle Charging Infrastructure (EVCI) is increasingly critical as the global transition toward electric mobility accelerates to reduce carbon emissions. This study provides a comprehensive evaluation of machine learning models for cyberattack detection using the CICSEV2024 dataset. The performance of tree-based algorithms, including Decision Trees (DT), Random Forest (RF), and Gradient Boosting (GB), is compared to identify effective yet interpretable models. Experimental results demonstrate that these models achieve exceptional performance, with DT, RF, and GB reaching 100% accuracy and precision. Furthermore, 10-fold cross-validation on an imbalanced dataset (Benign class) confirms the models’ consistency, maintaining a score of 1.00 across all iterations. The proposed models also achieve a perfect Area Under the Curve (AUC) score of 1.00, indicating their robustness and reliability in detecting cyberattacks. The findings highlight that simple and interpretable tree-based models can achieve state-of-the-art performance in EVCI cybersecurity detection, offering practical implications for enhancing the security of electric vehicle charging infrastructures in real-world deployments.
MODEL MACHINE LEARNING TREE BASED UNTUK DETEKSI SERANGAN PADA SISTEM CHARGING ELECTRIC VEHICLE Novettralita, Ucky Pradestha; Amirulbahar, Azis; Ramadhany, Emha Diambang; Arifin, M. Agus Syamsul
Jurnal Teknologi Informasi Mura Vol 17 No 2 (2025): Jurnal Teknologi Informasi Mura DESEMBER
Publisher : LPPM UNIVERSITAS BINA INSAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32767/jti.v17i2.2755

Abstract

Cyberattack detection in Electric Vehicle Charging Infrastructure (EVCI) is increasingly critical as the global transition toward electric mobility accelerates to reduce carbon emissions. This study provides a comprehensive evaluation of machine learning models for cyberattack detection using the CICSEV2024 dataset. The performance of tree-based algorithms, including Decision Trees (DT), Random Forest (RF), and Gradient Boosting (GB), is compared to identify effective yet interpretable models. Experimental results demonstrate that these models achieve exceptional performance, with DT, RF, and GB reaching 100% accuracy and precision. Furthermore, 10-fold cross-validation on an imbalanced dataset (Benign class) confirms the models’ consistency, maintaining a score of 1.00 across all iterations. The proposed models also achieve a perfect Area Under the Curve (AUC) score of 1.00, indicating their robustness and reliability in detecting cyberattacks. The findings highlight that simple and interpretable tree-based models can achieve state-of-the-art performance in EVCI cybersecurity detection, offering practical implications for enhancing the security of electric vehicle charging infrastructures in real-world deployments.