Claim Missing Document
Check
Articles

Found 4 Documents
Search

Peningkatan Efisiensi Bahan Bakar Melalui Redesain Aerodinamis Bodi Bus Dengan Metode Simulasi Computational Fluid Dynamics Yusuf , Defryan; Sukoco, Leonardo Paksi
Infotekmesin Vol 16 No 2 (2025): Infotekmesin: Juli 2025
Publisher : P3M Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/infotekmesin.v16i2.2799

Abstract

Buses are generally designed with an emphasis on aesthetics. However, the design also needs to consider aerodynamic performance factors, as they directly affect vehicle stability, fuel efficiency, and emissions levels. This study proposes an aerodynamic redesign of the bus body to reduce fuel consumption. The expected values can be calculated using two more targeted design models with the assistance of SolidWorks and Computational Fluid Dynamics (CFD) simulation method. This method was used to evaluate the influence of body design on vehicle performance. Results show that the conventional bus consumes 30,016.17 kJ/year, while the redesigned bus only consumes 21,935.79 kJ/year, with a 26.93% reduction in fuel consumption. Additionally, the redesigned bus exhibits a lower drag coefficient, drag force, and energy input, indicating the effectiveness of the aerodynamic improvements.
OPTIMALISASI MATERIAL DAN PROFILE REINFORCEMENT BEAM GUNA MENINGKATKAN ENERGI SERAP BENTURAN BERBASIS SIMULASI FEM Sukoco, Leonardo Paksi; Tohom, Frans; Pranoto, Ethys
Jurnal Rekayasa Mesin Vol. 16 No. 1 (2025)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v16i1.2106

Abstract

Bumpers are critical structures in passenger vehicles, designed to absorb low-speed impact energy. This study examines the effect of profile combinations (C-Hat and Double-Hat Section) and materials (Steel Bare/E.G.-H.F.80Y 100T, CFRP T700S, Aluminium 2024-T86) on MPV bumper reinforcement beam performance under UN ECE R.42 standards. Finite Element Method (FEM) simulations using ANSYS Explicit Dynamic with longitudinal impact tests (4 km/h) and side tests (2.5 km/h) were conducted to evaluate deformation, stress, and energy absorption. Results revealed that C-Hat Section with Aluminium 2024-T86 delivered optimal performance: von Mises stress 194.40 MPa, deformation 1.2057 mm, and energy absorption 160.31 J at 4 mm thickness. The Weighted Sum Model (WSM) analysis confirmed this combination as the best choice (score 1.773). The proposed design meets safety criteria while maintaining weight efficiency for MPV applications.
Pengembangan Ergonomi Kursi Belajar Berbasis Desain dan Simulasi Elemen Hingga Aravy, Mochammad Avrieza Havies; Sukoco, Leonardo Paksi; Al Bana, Nurrahim Hasan; Rosyid, Muhamad Burhanudin; Wibowo, Helmi
Jurnal Promotif Preventif Vol 8 No 6 (2025): Desember 2025: JURNAL PROMOTIF PREVENTIF
Publisher : Fakultas Kesehatan Masyarakat Universitas Pancasakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47650/jpp.v8i6.2387

Abstract

Kursi belajar yang tidak sesuai prinsip ergonomi dapat menimbulkan ketidaknyamanan dan meningkatkan risiko musculoskeletal disorders (MSDs) pada pengguna. Penelitian ini bertujuan menghasilkan desain kursi belajar ergonomis yang aman dan stabil secara struktural melalui pemodelan CAD dan simulasi Finite Element Method (FEM). Bahan penelitian meliputi data sekunder antropometri mahasiswa Indonesia usia 18-25 tahun dari Database Antropometri Nasional (n=1.500) sebagai dasar penentuan dimensi kursi, data sifat mekanik material aluminum alloy 6061-T6, serta standar ergonomi SNI 9011:2021 dan ISO 9241-5. Pemodelan geometri dilakukan menggunakan SolidWorks 2022, sedangkan analisis pembebanan statis sebesar 600 N menggunakan SolidWorks Simulation Static. Parameter evaluasi meliputi tegangan von Mises, regangan ekuivalen, deformasi total, dan faktor keamanan. Hasil simulasi menunjukkan tegangan maksimum 126,8 MPa (46% tegangan luluh) yang masih berada di bawah tegangan luluh material, regangan yang tetap berada pada rentang elastis, serta deformasi 7,77 mm yang masih dapat diterima untuk struktur kursi ringan. Nilai faktor keamanan minimum 2,17 mengindikasikan bahwa desain kursi berada dalam batas aman untuk penggunaan sehari-hari. Dari perspektif kesehatan, desain ini berpotensi mengurangi risiko MSDs melalui kesesuaian antropometri yang mempertahankan kurva lumbar alami dan fleksibilitas terkontrol yang mendukung sirkulasi darah selama aktivitas belajar berkepanjangan. Penelitian ini menyimpulkan bahwa desain kursi hasil redesign memenuhi kelayakan struktural dan berpotensi memberikan kontribusi signifikan dalam upaya pencegahan keluhan muskuloskeletal di lingkungan pendidikan tinggi.
Development of Regulatory Recommendations for City Bus Bumper Bars through Design and Analysis Based on Standard 67 Pa. Code § 171.44 Sukoco, Leonardo Paksi; Aravy, Mochammad Avrieza Havies; Banna, Nurrahim Hasan Al; Winesti, Feby Ayu
Piston: Journal of Technical Engineering Vol. 9 No. 2 (2026)
Publisher : Program Studi Teknik Mesin Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia currently does not have specific technical regulations governing the design of urban bus bumper bars, unlike passenger vehicles, which are regulated by national and international standards. Data from the Indonesian National Police Traffic Corps in 2022 recorded 3,847 bus-related accidents resulting in 587 fatalities, with 42 percent occurring in urban areas at speeds ranging from 30 to 50 km/h. This study aims to develop regulatory recommendations for urban bus bumper bars by adapting the standard 67 Pa. Code §171.44 to Indonesian operational conditions. The research methodology includes field observations of 10 Trans Jogja buses, bumper bar design using a combination of 6061-T6 aluminum alloy and elastomer materials, and structural performance analysis through impact simulations based on the Explicit Dynamics finite element method using ANSYS software. The simulation results show that the proposed bumper bar design satisfies safety requirements, with maximum stress values of 260 MPa at 30 km/h and 293 MPa at 50 km/h. Although the stress at 50 km/h exceeds the material yield strength of 280 MPa, the response indicates localized plastic deformation without global structural failure. Controlled deformation of 163.04 mm at 30 km/h and 275.78 mm at 50 km/h, following a localized progressive deformation pattern without excessive intrusion, along with an energy absorption capacity of at least 5 kJ, demonstrates effective passenger protection. The resulting regulatory recommendations include dimensional specifications (height 400–600 mm, width ≥2000 mm), material requirements (yield strength ≥250 MPa), and performance criteria to support the revision of Minister of Transportation Regulation No. 33 of 2018.