Putri, Rezky Arisanti
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Efektifitas EFEKTIFITAS PENERAPAN SISTEM INFORMASI ANTRIAN PENGAMBILAN IJAZAH (SIANI) SEBAGAI PENUNJANG LAYANAN AKADEMIK DI BAKPK UNESA PADA MASA PANDEMI COVID-19 Putri, Rezky Arisanti; Sujono, Sujono; Mislica, Anita; Yudianto, Eka; Widiyanti, Eka
IT-Edu : Jurnal Information Technology and Education Vol. 6 No. 3 (2021): Volume 06 No 3 2021
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/it-edu.v6i3.43621

Abstract

Munculnya wabah virus Corona yang menyerang hampir seluruh wilayah di Indonesia, serta pemberlakuan kebijakan Pembatasan Kegiatan Masyarakat (PPKM) berdampak pada semua sektor. Baik dalam bentuk kegiatan maupun aktivitas setiap sektor termasuk layanan akademik di perguruan tinggi. Salah satu upaya yang dilakukan agar layanan akademik dapat berjalan secara efektif adalah memanfaaatkan teknologi informasi dan komunikasi (TIK) yang diintegrasikan kedalam sistem informasi manajemen. Sistem Informasi Antrian Pengambilan Ijazah (SIANI) adalah sistem informasi yang berbasis komputer dan internet yang digunakan oleh BAKPK Unesa untuk menunjang layanan akademik di masa pandemi Covid-19 saat ini. Tahapan penelitian ini mengacu pada model of instructional development cycle meliputi fase analysis (analisis), planning (perencanaan), design (perancangan), development (pengembangan), implementation (implementasi), evaluation and revision (evaluasi dan revisi). Berdasarkan hasil penilaian responden penerapan SIANI sebagai penunjang layanan akademik di BAKPK Unesa pada masa pendemi covid-19 dinilai sangat efektif karena telah memenuhi beberapa aspek penilaian yang diujikan. Selain itu, penerapan SIANI dapat meningkatkan kecepatan pelayanan pengambilan ijazah di BAKPK Unesa. Kata Kunci: efektivitas, layanan akademik, SIANI
MD-ViT: Multidomain Vision Transformer Fusion for Fair Demographic Attribute Recognition Putri, Rezky Arisanti; Putra, Ricky Eka; Yamasari, Yuni
JIEET (Journal of Information Engineering and Educational Technology) Vol. 9 No. 2 (2025)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jieet.v9n2.p64-79

Abstract

Demographic attribute recognition particularly race and gender classification from facial images, plays a critical role in applications ranging from precision healthcare to digital identity systems. However, existing deep learning approaches often suffer from algorithmic bias and limited robustness, especially when trained on imbalanced or non-representative data. To address these challenges, this study proposes MD-ViT, a novel framework that leverages multidomain Vision Transformer (ViT) fusion to enhance both accuracy and fairness in demographic classification. Specifically, we integrate embeddings from two task-specific pretrained ViTs: ViT-VGGFace (fine-tuned on VGGFace2 for structural identity features) and ViT-Face Age (trained on UTKFace and IMDB-WIKI for age-related morphological cues), followed by classification using XGBoost to model complex feature interactions while mitigating overfitting. Evaluated on the balanced DemogPairs dataset (10,800 images across six intersectional subgroups), our approach achieves 89.07% accuracy and 89.06% F1-score, outperforming single-domain baselines (ViT-VGGFace: 88.61%; ViT-Age: 78.94%). Crucially, fairness analysis reveals minimal performance disparity across subgroups (F1-score range: 87.38%–91.03%; σ = 1.33), indicating effective mitigation of intersectional bias. These results demonstrate that cross-task feature fusion can yield representations that are not only more discriminative but also more equitable. We conclude that MD-ViT offers a principled, modular, and ethically grounded pathway toward fairer soft biometric systems, particularly in high-stakes domains such as digital health and inclusive access control.