Claim Missing Document
Check
Articles

Found 2 Documents
Search

Dynamic Programming Implementation for Delivery Route Optimization in E-Commerce Logistics Priscilia, Selfi Audy; Indra, Zulfahmi; Putri, Fahra Pebiana
Jurnal Indonesia Sosial Teknologi Vol. 5 No. 10 (2024): Jurnal Indonesia Sosial Teknologi
Publisher : Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59141/jist.v5i10.6423

Abstract

The rapid growth of e-commerce has created new challenges in logistics optimization, particularly in terms of delivery route efficiency. This research develops a dynamic programming model to optimize delivery routes in the context of e-commerce in Indonesia. Using a modified Vehicle Routing Problem with Time Windows (VRPTW) approach, we implemented an algorithm that considers various factors such as distance, time, and cost. Simulations using synthetic datasets showed efficiency improvements of 18.7% in travel distance and 22.3% in delivery time compared to conventional methods. Field trials with an e-commerce partner resulted in a 21.5% reduction in travel distance and an increase in on-time delivery rate from 87% to 94%. Sensitivity analysis revealed that the algorithm's performance is most affected by demand fluctuations and changes in traffic conditions. Implementation challenges include integration with existing systems and consideration of workforce impact. This research opens avenues for further development in algorithm scalability, integration of sustainability factors, and adaptation to various geographical contexts, demonstrating significant potential for improving e-commerce logistics efficiency in the future.
Perancangan dan Implementasi Sistem Logging Jaringan Berbasis Website dengan Fitur Multi-User Real-Time dan Deteksi Zai, Tri Sapta Warman; Kiswanto, Dedy; Putri, Fahra Pebiana; Valentino, Bob
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 8, No 6 (2025): Desember 2025
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v8i6.9915

Abstract

Abstrak - Perkembangan teknologi informasi menimbulkan tantangan dalam deteksi anomali log secara real-time. Penelitian ini mengembangkan NetLog, sistem monitoring log dengan pendekatan hybrid yang menggabungkan deep learning dan deteksi berbasis aturan. Sistem menggunakan Autoencoder untuk mempelajari pola log normal dan rule-based detector sebagai fallback. Arsitektur terdiri dari backend FastAPI, frontend React/Next.js, dan modul anomaly detection. Hasil implementasi menunjukkan sistem berhasil mendeteksi 60% serangan simulasi dengan precision 100% dan recall 20%. Evaluasi komprehensif menunjukkan ROC AUC 82% dan PR AUC 86.7%, mengindikasikan kemampuan model yang baik dalam membedakan log normal dan log anomali. Dashboard real-time menampilkan log dengan latensi di bawah 2 detik. Kesimpulannya, pendekatan hybrid pada NetLog terbukti efektif memperluas cakupan deteksi anomali dibandingkan metode tunggal, meskipun masih diperlukan peningkatan sensitivitas deteksi.Kata kunci: Deteksi Anomali; Autoencoder; Deep Learning; Monitoring Log; Sistem Real-time; Abstract - The rapid advancement of information technology poses new challenges in real-time log anomaly detection. This study develops NetLog, a log monitoring system based on a hybrid approach that combines deep learning with rule-based detection. The system employs an Autoencoder to learn normal log patterns and a rule-based detector as a fallback mechanism. The architecture consists of a FastAPI backend, React/Next.js frontend, and an anomaly detection module. The implementation results show that the system successfully detected 60% of simulated attacks with 100% precision and 20% recall. A comprehensive evaluation demonstrates ROC AUC of 82% and PR AUC of 86.7%, indicating a strong ability of the model to distinguish between normal and anomalous logs. The real-time dashboard displays log data with latency below 2 seconds. In conclusion, the hybrid approach of NetLog effectively broadens anomaly detection coverage compared to single-method systems, although improvements in sensitivity are still required.Keywords: Anomaly Detection; Autoencoder; Deep Learning; Log Monitoring; Real-time System;