Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALYSIS OF THE CARACTERISTICS OF PLASTIC OIL FOR FISHING TOOLS MADE FROM POLYETHELIENE (PE) AND POLYAMID (PA) Marsono, Marsono; Wijatmika, Wijatmika; Mustono, Eddy
Aurelia Journal Vol 7, No 1 (2025): April
Publisher : Politeknik Kelautan dan Perikanan Dumai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15578/aj.v7i1.15024

Abstract

The caracteristic of plastic oil include density, viscosity and heating value Plastic waste can be used as raw material for plastic oil by usingpyrolysis process. The resulting plastic oil can be used as an additive or mixturefuel in the engine. In this research, the process of making plastic oil was used twicepyrolysis process. The reactor temperatures in the first and second pyrolysis processes are different respectivelynamely 200 oC and 150 oC. From the results of this research it is known that in the first pyrolysis processwith a reactor temperature of 200 oC, from 25 kg of raw material produces 15.5 liters of plastic oil intime 8 hours. Meanwhile, in the second pyrolysis process with a reactor temperature of 150 oC, from 15 liters of oilThe plastic from the first pyrolysis process produces 11.6 liters of plastic oil in 3.33 minutesO'clock. The characteristics of the plastic oil produced are a density of 771.4 kg/m3, Viscosity0.501 m2/s and calorific value 10518 kJ/kg.
Sistem Deteksi Penyakit Ikan Koi Menggunakan Metode YOLOv5 Pratiwi, Citra Zaskia; Jayanti, Shara; Subiantoro, Raedy Anwar; Ziliwu, Boby Wisely; Mustono, Eddy
TELKA - Telekomunikasi Elektronika Komputasi dan Kontrol Vol 11, No 3 (2025): TELKA
Publisher : Jurusan Teknik Elektro UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/telka.v11n3.302-314

Abstract

Penyebab utama peningkatan kematian di budidaya perikanan adalah penyakit ikan. Salah satu ikan yang mudah terserang hama dan penyakit adalah ikan koi. Identifikasi penyakit ikan koi secara otomatis pada tahap awal merupakan langkah penting untuk mencegah penyebaran penyakit. Deteksi penyakit ikan koi dapat dilakukan melalui berbagai cara yaitu pemeriksaan visual, penggunaan sensor fisik, analisis genetik, teknologi citra dan pengolahan citra, biosensor dan biochips, teknologi saringan molekuler, jaringan saraf tiruan (artificial neural networks) dan pembelajaran mesin. Sistem deteksi penyakit ikan koi pada penelitian ini menggunakan YOLOv5. Hal ini dikarenakan YOLOv5 memiliki beberapa kelebihan antara lain memiliki tingkat akurasi yang tinggi, dapat mendeteksi secara real time, model ringan, sederhana dalam training, dan open source. Penelitian ini melalui beberapa tahap, yaitu pengumpulan dan penyiapan data, pelatihan model dengan algoritma YOLOv5, serta proses evaluasi terhadap performa model. Pada tahap ini, model dievaluasi berdasarkan nilai accuracy, recall, precision, dan mean Average Precision (mAP). Nilai accuracy sebesar 90% didapatkan sebagai hasil evaluasi model, nilai precision untuk ikan sehat (healthy-fish) sebesar 83,33% sedangkan untuk ikan sakit (sick-fish) sebesar 80%, recall sebesar 100%, dan mean Average Percision (mAP) sebesar 81,67%. Hal ini menunjukan bahwa model mampu mengklasifikasikan secara akurat ikan sehat dan ikan sakit. The main reason for higher mortality in aquaculture is fish-related diseases. One type of fish that is highly susceptible to pests and diseases is the koi fish. Early-stage automatic identification of koi fish diseases is an essential step in preventing the spread of infection. Koi fish disease detection can be conducted through various methods, including visual inspection, physical sensors, genetic analysis, image technology and image processing, biosensors and biochips, molecular screening technology, artificial neural networks, and machine learning. The disease detection system in this study uses YOLOv5, due to its several advantages: high accuracy, real-time detection capability, lightweight model, simplicity in training, and being open-source. This research comprises a series of steps, starting from data preparation and model training using YOLOv5, to the evaluation process which measures accuracy, precision, recall, and mean Average Precision (mAP). A 90% accuracy was achieved through the evaluation of the model, precision scores were 83.33% for healthy fish and 80% for sick fish. The model achieved a recall score was 100%, with mAP score was 81.67%. This model evaluation confirms the accurate detection of both healthy and sick fish.