This Author published in this journals
All Journal Journal La Multiapp
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Application of SVM and Naive Bayes with PSO for the Classification of Saloka Amusement Park Reviews Putri, Indira Alifia; Umam, Khothibul; Handayani, Maya Rini; Mustofa, Hery
Journal La Multiapp Vol. 6 No. 6 (2025): Journal La Multiapp
Publisher : Newinera Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37899/journallamultiapp.v6i6.2505

Abstract

Visitor opinions on tourist destinations can be evaluated through sentiment analysis based on textual reviews. This study aimed to compare the performance of Support Vector Machine (SVM) and Naive Bayes (NB) algorithms in classifying visitor sentiments toward reviews of Saloka Theme Park, while also assessing the impact of parameter optimization using Particle Swarm Optimization (PSO). A total of 740 reviews were collected from the Traveloka platform and underwent text preprocessing. The optimization process targeted key parameters of each algorithm to improve the F1-score. Experimental results showed that the unoptimized SVM achieved an accuracy of 89 percent, while NB reached 86 percent. After applying PSO, SVM's accuracy dropped to 84 percent, whereas NB improved to 85 percent with more balanced classification across sentiment classes. These results recommend the integration of Naive Bayes with Particle Swarm Optimization as a potential approach for sentiment classification of tourism reviews, particularly in the case study of Saloka Theme Park.