Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Sentimen Masyarakat Terhadap Kaesang Pangarep pada Media Sosial Twitter/X Menggunakan MLP Classifier dengan Fitur FastText Tarmizi, Veci Cahyono; Agustian, Surya; Okfalisa, Okfalisa; Pizaini, Pizaini
TIN: Terapan Informatika Nusantara Vol 6 No 7 (2025): December 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/tin.v6i7.8815

Abstract

Social media has become a primary channel for the public to express their opinions and reactions toward various political developments in Indonesia. One of the prominent discussions revolves around Kaesang Pangarep’s appointment as the Chairman of the Indonesian Solidarity Party (PSI). This study aims to analyze and classify public sentiment regarding this issue by employing the Multi-Layer Perceptron (MLP) algorithm integrated with FastText-based text representation. The dataset was collected from Twitter using keywords such as “Kaesang PSI”, and was further expanded with additional data from general topics including Covid-19 and Open Topic, ensuring a balanced distribution across positive, neutral, and negative sentiment categories for a more comprehensive representation of public opinion. The model’s performance was evaluated through four metrics: accuracy, precision, recall, and F1 Score. The experimental results demonstrate that the MLP–FastText model achieved consecutive scores of 0. 5129 for F1 Score, 0. 6035 for accuracy, 0. 5319 for precision, and 0. 5996 for recall. These findings indicate that the combination of MLP and FastText effectively captures sentiment patterns within textual data, particularly in the context of unstructured and dynamic social media content, and performs well when enhanced with relevant external data augmentation strategies.