Claim Missing Document
Check
Articles

Found 1 Documents
Search

YOLOv8n untuk Deteksi Sampah secara Real-Time pada Aplikasi Bank Sampah Antanita, Yulintyandra Puja; Ardana, Arfio; Alfin, Khoerunnisa; Pratama, Yugo; Purnamasari, Rita; Saleh, Khaerudin
eProceedings of Engineering Vol. 12 No. 6 (2025): Desember 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pengelolaan sampah merupakan tantangan lingkungan yang signifikan di Indonesia, terutama di kawasan perkotaan dengan tingkat kesadaran pemilahan sampah yang masih rendah. Program bank sampah yang diatur dalam Peraturan Menteri Negara Lingkungan Hidup Republik Indonesia Nomor 13 Tahun 2012 bertujuan untuk mendorong partisipasi masyarakat dalam pengelolaan sampah berbasis komunitas, namun pelaksanaannya masih belum optimal akibat keterbatasan teknologi dan proses administrasi yang masih manual. Penelitian ini mengusulkan pengembangan aplikasi bank sampah berbasis mobile yang mengintegrasikan model YOLOv8n untuk deteksi jenis sampah secara real-time. Dataset terdiri dari sembilan kategori sampah dengan total 4.500 gambar, yang dianotasi dan dibagi menjadi data latih, validasi, dan uji dengan rasio 80:10:10. Model YOLOv8n dilatih menggunakan konfigurasi 70 epoch, learning rate 0,001, dan optimizer AdamW, menghasilkan performa mAP@0.5 sebesar 0,995 dan mAP@0.5:0.95 sebesar 0,785. Pengujian lanjutan menunjukkan kemampuan generalisasi yang baik terhadap variasi bentuk, latar belakang, jarak, dan skenario multi-objek, meskipun performa menurun pada bentuk dan warna yang jarang muncul dalam dataset serta pada deteksi jarak jauh. Hasil penelitian membuktikan bahwa YOLOv8n memiliki potensi tinggi untuk diimplementasikan dalam sistem bank sampah berbasis mobile guna meningkatkan efisiensi pemilahan dan partisipasi masyarakat.. Keywords— Objek Deteksi, YOLOv8n, Computer Vision, Machine learning