Jurnal Sistem Cerdas
Vol. 3 No. 3 (2020): Kecerdasan Artifisial pada Rekayasa Biomedis

Sistem Pelacakan Posisi Aset Laboratorium Melalui Sensor Tanpa Kontak Fisik Menggunakan Metode K – Nearest Neighbor (K- NN)

Atika Nur Rahmawati (Teknologi Rekayasa Otomasi Politeknik Manufaktur Bandung)
Susetyo Bagas Bhaskoro (Politeknik Manufaktur Bandung)
Siti Aminah (Politeknik Manufaktur Bandung)



Article Info

Publish Date
29 Dec 2020

Abstract

The purpose of this research is to build a laboratory asset position tracking system automatically by utilizing data acquisition from contactless based sensors, namely UHF RFID. In addition, this study also identifies the location of the asset position using the K-Nearest Neighbor method. This case study of tracking the position of assets was conducted at the Manufacturing Automation Engineering Department and Mechatronics, Bandung Manufacturing Polytechnic. The identification of the position of laboratory assets in this study uses the RSSI RFID asset tag as a predictor which will then be compared with 240 training data samples (training data). Testing of the RFID tag position detection system was carried out by means of three RFID readers detecting RFID tags simultaneously and producing an average classification accuracy of 64%.

Copyrights © 2020






Journal Info

Abbrev

jsc

Publisher

Subject

Automotive Engineering Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering

Description

Jurnal Sistem Cerdas dengan eISSN : 2622-8254 adalah media publikasi hasil penelitian yang mendukung penelitian dan pengembangan kota, desa, sektor dan kesistemam lainnya. Jurnal ini diterbitkan oleh Asosiasi Prakarsa Indonesia Cerdas (APIC) dan terbit setiap empat bulan ...