ABSTRAK Pada saat ini sudah banyak para peneliti yang sukses mengimplementasikan algoritma regresi di berbagai bidang. Pada penelitian ini, dilakukan perbandingan algoritma regresi dengan penggabungan algoritma regresi dan PSO Search serta Linear Forward Selection untuk membandingkan apakah hasil optimasi lebih baik dari sebelumnya. Pada algoritma regresi menggunakan 5 algortima, yaitu Linear Regression, K-NN, Decision Tree, Support Vector Regression dan Multi Layer Perseptron. Metode optimasi yang digunakan adalah PSO Search dan Linear Forward Selection. Dataset yang digunakan adalah data publik untuk rekayasa perangkat lunak diantaranya Albrecht, China, Cocomo81, COCOMO Nasa V1, COCOMO Nasa 2, Desharnais, kemerer, Kitchenham, Maxwell dan Miyazaki. Berdasarkan pengujian yang telah dilakukan algoritma linear regression, K-NN dan Support Vector Regression mendapatkan hasil yang lebih baik dibandingkan sebelum optimasi, algoritma Decision Tree mendapatkan hasil tidak baik dibanding sebelum optimasi dan algoritma Multi Layer Perseptron mendapatkan hasil baik hanya pada linear forward selectionKata Kunci : Optimasi; PSO Search; Linear Forward Selection; Algoritma Regresi; RMSE ABSTRACTNowadays many researchers have successfully implemented regression algorithms in various fields. In this study, a comparison of the regression algorithm was carried out by combining the regression algorithm and PSO Search and Linear Forward Selection to compare whether the optimization results were better than before. The regression algorithm uses 5 algorithms, namely Linear Regression, K-NN, Decision Tree, Support Vector Regression and Multi Layer Perseptron. The optimization method used is PSO Search and Linear Forward Selection. The dataset used is public data for software engineering including Albrecht, China, Cocomo81, COCOMO Nasa V1, COCOMO Nasa 2, Desharnais, Kemerer, Kitchenham, Maxwell and Miyazaki. Based on tests that have been done, the K-NN linear regression algorithm and Support Vector Regression get good results, the Decision Tree algorithm gets bad results and the Multi Layer Perseptron algorithm gets good results on linear forward selection only.Keyword : Optimization; PSO Search; Linear Forward Selection; Regression Algorithm; RMSE
Copyrights © 2022