UNP Journal of Statistics and Data Science
Vol. 1 No. 2 (2023): UNP Journal of Statistics and Data Science

Comparison of Forecasting Using Fuzzy Time Series Chen Model and Lee Model to Closing Price of Composite Stock Price Index

Mohammad Reza febrino (Universitas Negeri Padang)
Dony Permana (Unknown)
syafriandi (Unknown)
Nonong Amalita (Unknown)



Article Info

Publish Date
08 Mar 2023

Abstract

Investment is an activity to invest with the hope that someday you will get a number of benefits from theinvestment result. In investing, analyzing is important to see the current situation and condition of stock. Investorscan forecast stock prices by looking at trends based on data movements from stock prices in the past. Fuzzy TimeSeries (FTS) was used in this study to forecast. Fuzzy time series is a forecasting technique that uses patterns frompast data to project future data in areas where linguistic values are formed in the data. This study compares theclosing price of composite stock forecasting using the fuzzy time series chen and lee models. The JCI's closing pricefor the following period is 6,904 and has a Mean Absolute Percentage Error (MAPE) of 4.03%, according to the chenfuzzy time series method. In contrast, utilizing Lee's fuzzy time series method, the predicted JCI closing price for thefollowing period is 7,046, with a MAPE value of 3.10 percent. It can be concluded from the forecasting results of theChen and Lee methods that the Lee model FTS is superior to the Chen model FTS in predicting the JCI closing price.

Copyrights © 2023






Journal Info

Abbrev

ujsds

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics Social Sciences

Description

UNP Journal of Statistics and Data Science is an open access journal (e-journal) launched in 2022 by Department of Statistics, Faculty of Science and Mathematics, Universitas Negeri Padang. UJSDS publishes scientific articles on various aspects related to Statistics, Data Science, and its ...