Jurnal Penelitian Pendidikan IPA (JPPIPA)
Vol 10 No 4 (2024): April

Machine Learning Predicts the Level of Disease Spread

Saputra, Dhio (Unknown)
Wisky, Irzal Arief (Unknown)
Defit, Sarjon (Unknown)



Article Info

Publish Date
25 Apr 2024

Abstract

The aim of the research is predictive analysis of the spread of disease. Variable analysis at the population level in a region and the total disease events detected in the community. These variables can show the accuracy and certainty of the status of the resulting analysis. The concept of Machine Learning analysis is proposed to develop previous analysis models. The methods used include the K-Means cluster, Naïve Bayes, and Decision Tree (DT). There are two stages in the analysis process: pre-processing and classification. The discussion presented by K-Means provides a classification analysis pattern. The patterns obtained will be passed on to the classification process using Naïve Bayes and DT. Naïve Bayes results provide quite significant results with an accuracy rate of 83.33%. DT can also describe the results of information and knowledge analysis in the form of decision trees. DT produces decision trees that can provide knowledge and information analysis. The DT results provide an accuracy rate of 91.76% so these results can be used as consideration in decision making. The resulting information and knowledge can be used as a guide in making policies for handling health in the community.

Copyrights © 2024






Journal Info

Abbrev

jppipa

Publisher

Subject

Agriculture, Biological Sciences & Forestry Biochemistry, Genetics & Molecular Biology Chemical Engineering, Chemistry & Bioengineering Chemistry Education Materials Science & Nanotechnology Physics

Description

Science Educational Research Journal is international open access, published by Science Master Program of Science Education Graduate Program University of Mataram, contains scientific articles both in the form of research results and literature review that includes science, technology and teaching ...