Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research
Vol. 1 No. 3c (2024): JULI (Tambahan)

Sistem Rekomendasi Linimasa Facebook Berdasarkan Topik Kesukaan Pengguna Menggunakan Metode Content-Based Filtering & Term Frequency-Inverse Document Frequency

Bayu Setiawan (Universitas Pembangunan Nasional “Veteran” Jawa Timur)
Bagus Satrio Wicaksono (Universitas Pembangunan Nasional “Veteran” Jawa Timur)
Muhammad Hilmy Aziz (Universitas Pembangunan Nasional “Veteran” Jawa Timur)
Anggraini Puspita Sari (Universitas Pembangunan Nasional “Veteran” Jawa Timur)



Article Info

Publish Date
14 Jul 2024

Abstract

This research aims to identify Facebook timeline recommendation systems based on user habits using Content-Based Filtering (CBF) and Term Frequency-Inverse Document Frequency (TF-IDF) methods. By utilizing historical user activity data, this system will customize content recommendations for individual users. The CBF method is used to compare the similarity of the content to be recommended with the user's habits, while TF-IDF is used to evaluate various keywords in the content. The results of this study show that the combination of CBF and TF-IDF methods can improve the accuracy of recommendation in Facebook timeline, resulting in a more convenient and relevant user experience.

Copyrights © 2024






Journal Info

Abbrev

mister

Publisher

Subject

Humanities Economics, Econometrics & Finance Education Social Sciences Other

Description

The Journal of MISTER (Jurnal Penelitian Multidisiplin dalam Ilmu Pengetahuan, Teknologi dan Pendidikan) focuses on publishing manuscripts of any research (multidisciplinary) within the following areas Education, Economics, Social Sciences, Technology, Engineering, Arts, Law & Ethics, Psychology, ...