Abstract:  The aim of the research is to apply a mathematical model of the spread of infectious diseases aimed at livestock by analyzing the stability of being free from Foot and Mouth Disease in livestock and knowing the implementation of the simulation results of the model. The method used in this applied research is the Action Research method which is used to test, develop and create new actions. This type of research is quantitative which aims to test hypotheses through data collected in accordance with previous concepts. Model for the spread of FMD, obtained by the SVIEPR model where the model is divided into 6 compartments, namely: susceptible compartment (S), vaccinated compartment (V), infected compartment (I), latent compartment (E), quarantined livestock compartment (Q), and recovered compartment. (R). the results of equilibrium point stability analysis and numerical simulations show that the disease will disappear if and the disease will persist if  . So the step that can be taken to prevent the disease from becoming an epidemic is to reduce contact between susceptible individuals and (????). being infected increases the rate of individuals being vaccinated (????) and the rate of isolation after vaccination (α). Abstrak: Tujuan penelitian menerapkan model matematika penyebaran penyakit menular yang ditujukan pada hewan ternak dengan menganalisis kestabilan bebas Penyakit Mulut dan Kuku pada  hewan ternak dan mengetahui implementasi hasi simulasi model tersebut. Metode yang di gunakan pada penelitian terapan ini yaitu metode Penelitian Tindakan (Action Research) yang digunakan untuk menguji, mengembangkan dan menciptakan tindakan baru. Jenis penelitian ini yaitu kuantitatif yang bertujuan untuk menguji hipotesa melalui data-data yang terkempul sesuai dengan konsep sebelumnya. Model penyebaran PMK, diperoleh model SVIEPR dimana model dibagi atas 6 kompartemen yaitu: kompartemen rentan (S), kompartemen divaksinasi (V), kompartemen terinfeksi (I), kompartemen laten (E) kompartemen melaksanakan Hewan ternak dikarantina (Q), dan kompartemen sembuh (R). hasil analisis kestabilan titik ekuilibrium dan simulasi numerik diperoleh bahwa penyakit akan hilang jika  dan penyakit akan menetap jika . Sehingga langkah yang dapat dilakukan supaya penyakit tidak menjadi wabah adalah dengan mengurangi kontak antar individu rentan dengan (????). terinfeksi meningkatkan laju individu yang divaksinasi (????) dan laju pelaksanaan isolasi sesudah divaksinasi (α).
                        
                        
                        
                        
                            
                                Copyrights © 2023