This research delves into sentiment analysis for digital election campaign advertisements using the Multinomial Naive Bayes approach. The study addresses the limitations of standard sentiment analysis methodologies in capturing the intricacies of public sentiments toward political ads. The dataset, sourced from Kaggle, encompasses 3000 records with sentiments categorized as positive, neutral, and negative. The Multinomial Naive Bayes model demonstrated a substantial accuracy increase from 92% to 96%, outperforming the standard Naive Bayes model. Precision, recall, and F1-score metrics consistently improved across sentiment categories. While dataset representativeness and cultural specificity pose limitations, the research contributes significantly to sentiment analysis methodologies in politically charged digital environments. Future research recommendations include exploring advanced NLP techniques, incorporating real-time data from diverse social media platforms, and addressing ethical considerations in political sentiment analysis. The outcomes emphasize the importance of tailored methodologies for enhanced accuracy in understanding sentiments expressed in digital election campaign advertisements.
Copyrights © 2024