EIGEN MATHEMATICS JOURNAL
Vol 7 No 1 (2024): June

Solusi Numerik pada Persamaan Korteweg-De Vries Equation menggunakan Metode Beda Hingga

Maulana Rifky Haizar (Universitas Mataram)
Miptahul Rizki (Universitas Mataram)
Nuzla Af'idatur Robbaniyyah (Universitas Mataram)
Bulqis Nebulla Syechah (Universitas Mataram)
Salwa Salwa (Universitas Mataram)
Lailia Awalushaumi (Universitas Mataram)



Article Info

Publish Date
15 Feb 2024

Abstract

The Korteweg-de Vries (KdV) equation is a nonlinear partial differential equation that has a key role in wave physics and many other disciplines. In this article, we develop numerical solutions of the KdV equation using the finite difference method with the Crank-Nicolson scheme. We explain the basic theory behind the KdV equation and the finite difference method, and outline the implementation of the Crank-Nicolson scheme in this context. We also give an overview of the space and time discretization and initial conditions used in the simulation. The results of these simulations are presented through graphical visualizations, which allow us to understand how the KdV solution evolves over time. Through analysis of the results, we explore the behavior of the solutions and perform comparisons with exact solutions in certain cases. Our conclusion summarizes our findings and discusses the advantages and limitations of the method used. We also provide suggestions for future research in this area.

Copyrights © 2024






Journal Info

Abbrev

eigen

Publisher

Subject

Mathematics

Description

Eigen Mathematics Journal mempublikasikan artikel yang berkontribusi pada informasi baru atau pengetahuan baru terkait Matematika, Statistika, dan Aplikasinya. Selain itu, jurnal ini juga mempublikasikan artikel berbentuk survey dalam rangka memperkenalkan perkembangan terbaru dan memotivasi ...