Jurnal Informatika dan Teknik Elektro Terapan
Vol 13, No 1 (2025)

OPTIMASI ANALISIS SENTIMEN APLIKASI GLINTS MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM)

Rahmasari, Fanny (Unknown)
Rahaningsih, Nining (Unknown)
Dana, Raditya Danar (Unknown)
Rohmat, Cep Lukman (Unknown)



Article Info

Publish Date
20 Jan 2025

Abstract

Teknologi informasi telah mengubah cara orang mencari pekerjaan, dan aplikasi seperti Glints adalah salah satu contohnya. Namun, lebih banyak ulasan pengguna membuat analisis sentimen sulit. Pengelolaan fitur yang relevan dan pemilihan parameter yang ideal adalah masalah utama. Dengan menggunakan algoritma Support Vector Machine (SVM), penelitian ini mengoptimalkan analisis sentimen ulasan Glints. Sebanyak 2000 ulasan dari Playstore dikumpulkan melalui scraping, dengan 69,2% positif, 16,6% netral, dan 14,2% negatif. Dalam proses pra-pemrosesan, case folding dan transformasi fitur menggunakan TF-IDF dengan unigram dan bigram dilakukan. Model SVM memiliki tingkat akurasi tinggi sebesar 92 persen, presisi sebesar 87%, recall sebesar 86%, dan F1-Score sebesar 86%. Implementasi berbasis Streamlit memungkinkan analisis sentimen dalam waktu nyata. Hasil ini membantu pengembang Glints meningkatkan layanan yang diberikan oleh pengguna.Keyword : Analisis Sentimen, Support Vector Machine (SVM), Aplikasi Glints, Klassifikasi Sentimen.

Copyrights © 2025






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...