Automotive Experiences
Vol 7 No 3 (2024)

Addressing Fire Safety, Ground Impact Resistance, and Thermal Management in Composite EV Battery Enclosures: A Review

Kaleg, Sunarto (Unknown)
Sumarsono, Danardono Agus (Unknown)
Whulanza, Yudan (Unknown)
Budiman, Alexander Christantho (Unknown)



Article Info

Publish Date
14 Dec 2024

Abstract

Lithium-ion batteries are fundamental to modern electric vehicles, offering high energy density, long cycle life, and low self-discharge rates. However, thermal runaway—a critical safety issue involving uncontrolled temperature increases—can lead to fire or explosion. Ensuring flame retardancy is crucial in accidents where battery packs are exposed to external fires. Additionally, battery packs are susceptible to mechanical stresses and potential damage from ground impacts like debris or uneven road surfaces. Effective thermal management significantly impacts capacity and longevity. This review emphasizes the importance of researching flame retardancy, ground impact resistance, and thermal management, especially in composite battery enclosures. Composites serve as a lightweight alternative to metals and help overcome one of the main constraints of EVs, which is weight. Ground impact refers to the physical force battery packs endure during collisions, hitting potholes, debris, or accidents. Therefore, understanding the effects of ground impact on battery enclosures is crucial for design considerations. Effective thermal management is also essential, as it directly affects the performance and safety of Lithium-ion battery packs in EVs.

Copyrights © 2024






Journal Info

Abbrev

AutomotiveExperiences

Publisher

Subject

Aerospace Engineering Automotive Engineering Chemical Engineering, Chemistry & Bioengineering Control & Systems Engineering Electrical & Electronics Engineering Energy Materials Science & Nanotechnology Mechanical Engineering

Description

Automotive experiences invite researchers to contribute ideas on the main scope of Emerging automotive technology and environmental issues; Efficiency (fuel, thermal and mechanical); Vehicle safety and driving comfort; Automotive industry and supporting materials; Vehicle maintenance and technical ...